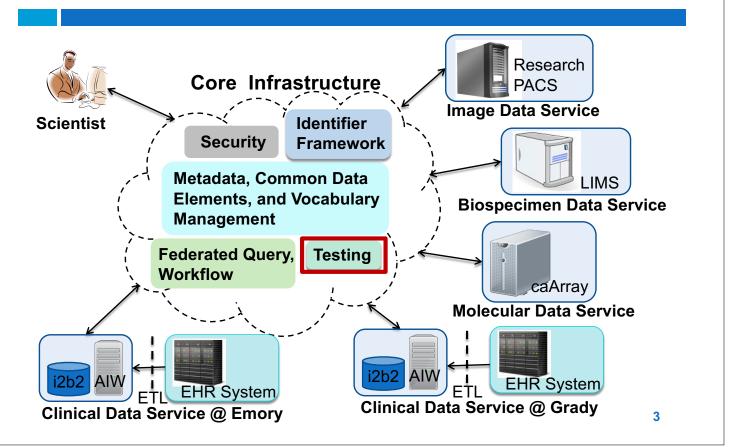
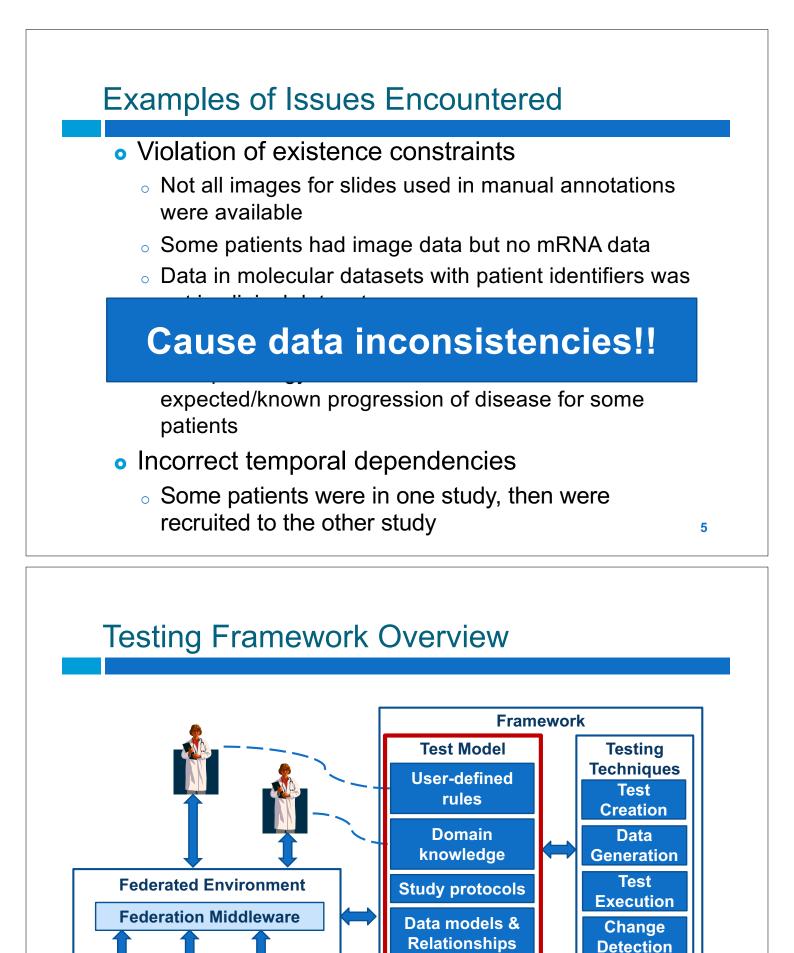
AN INFORMATICS FRAMEWORK FOR TESTING DATA INTEGRITY AND CORRECTNESS OF FEDERATED BIOMEDICAL DATABASES


<u>Mijung Kim</u>,¹ Tahsin Kurc,² Alessandro Orso,¹ Jake Cobb,¹ David Gutman,² Mary Jean Harrold,¹ Andrew Post,² Ashish Sharma,² Tony Pan, ² Dhananjaya Sommanna, ² Joel Saltz²

¹ College of Computing, Georgia Institute of Technology ² Center for Comprehensive Informatics, Emory University

Problem Definition

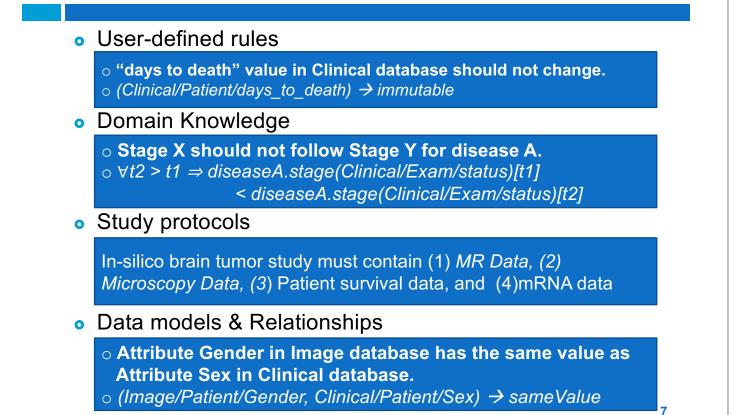

- Support systematic testing of data integrity and correct operation in a federated database environment
- Federated Database Environment
 - Heterogeneous data sources
 - Autonomously created and managed
- Efforts for Resource Federation
 - caBIG (cancer Biomedical Informatics Grid)
 - CVRG (CardioVascular Research Grid)
 - NHIN (Nationwide Health Information Network)
 - CTSAs (Clinical and Translational Science Awards)
 - Shrine (i2b2 Shared Health Research Information Network)

Federated Environment

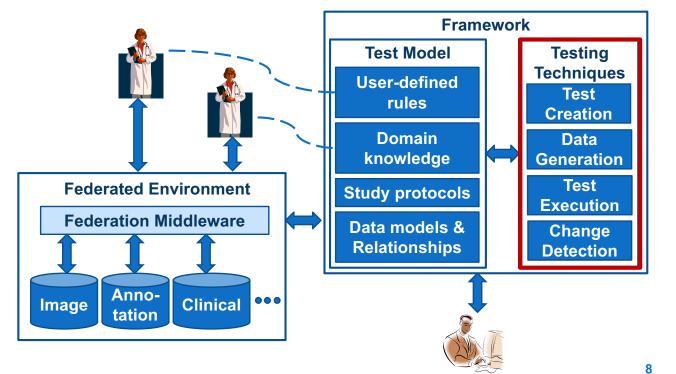
Use Case: In Silico Brain Tumor Research Center

- A research center for in silico study of brain tumors
 - Collaboration among four institutions
 - Goal: Better disease classification and study of disease progression
 - Initial focus on Gliomas
- Systematically execute in silico analyses (experiments) using complementary data types
 - Integration and correlation of clinical data and analysis results from omics, radiology imaging, and microscopy imaging data
 - Data from TCGA and Rembrandt projects as well as partner institutions

Anno-


tation

Image


Clinical

000

Test Model

Testing Framework Overview

Testing Techniques

Test Creation

- Analyze the test model
- o Identify relevant data elements
- Generate testing requirements and test cases

Data Generation

 Generate synthetic datasets to test critical but rarely-violated rules and private data

Test Execution

- Run tests periodically and on demand
- Report test outcome

Change Detection

- Detect changes
- o Identify effects of changes
- Execute relevant test cases

Current State

Type of Dataset	Data Management System
Neuroimaging Data	
Radiology images	Virtual PACS, xNAT
Manual annotations	AIME
Molecular Data	
mRNA, miRNA, methylation data, gene-expression data	in-house developed database with file system for data files
Clinical Data	
Clinical data, specimen data	i2b2, in-house developed database
Pathology Data	
Whole slide microscopy images, image metadata	caMicroscope
Microscopy image analysis results	PAIS

9

Example Rule (in OWL/SWRL)

- If a patient has molecular data, the patient must have clinical data
 (Molecular/Genomic/patient_id, Clinical/Patient/patient_id) → existIn
 <owl:Class rdf:ID="Molecular.Genomic.patient_id">
 </ds:subClassOf rdf:resource="ontology.owl#Column"/>
 </ds:subClassOf rdf:resource="ontology.owl#Column"/>
 </ds:subClassOf>
 </owl:Restriction>
 </owl:onProperty>
 - <owl:ObjectProperty rdf:ID="existIn"/>
 - </owl:onProperty>
 - <owl:someValuesFrom>
 <owl:Class rdf:about="#Clinical.Patient.patient_id"/>
 - </owl:someValuesFrom>
 - </owl:Restriction> </rdfs:subClassOf>
- </rdisisubl.

11

Conclusion

- Challenges in federated environments
 - Errors are inevitable
 - Developing customized and one-off solutions is expensive and inefficient
- Our work contributes a middleware framework
 - Test Model: High-level, rule-based representation of expected state
 - Testing Techniques
 - Generate test cases using the test model
 - Execute the test cases
 - Detect changes

THANK YOU!!

Acknowledgements:

Partially funded by: Federal funds from the National Cancer Institute; National Institutes of Health Contracts HHSN261200800001E, 94995NBS23, and 85983CBS43; NIH PHS Grants (UL1 RR025008, KL2 RR025009 or TL1 RR025010) from the CTSA program of NCRR; NHLBI R24 HL085343; NIH U54 CA113001; NLM R01LM009239-01A1, and BISTI P20 EB000591; NSF award CCF-0725202.