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Abstract 

Clinical research is increasingly relying on 
information gathered and managed in different 
database systems and institutions. Distributed data 
collection and management processes in such settings 
can be extremely complex and lead to a range of issues 
involving the integrity and accuracy of the distributed 
data. To address this challenge, we propose a 
middleware framework for assessing the data integrity 
and correctness in federated environments. The 
framework has two main elements: (1) a test model 
describing the dependencies between and constraints 
on data sources and datasets, and (2) a family of 
testing techniques that create and execute test cases 
based on the model.  

1. Introduction 

A growing number of studies gather and manage 
information from multiple data types and sources. 
Logistics, regulations, and data-analysis requirements 
may not always allow for centralized data gathering 
and management. Data may be collected from patients 
recruited at multiple institutions. Even within an 
institution, data may be collected and processed by 
different laboratories because of instrumentation and 
analysis requirements. Federated systems have been 
developed and employed [1,2,3,4] for these types of 
studies to support distributed data access and analysis 
requirements. An important component that is missing 
in most existing systems is a middleware framework 
for testing the data integrity and correct operation of a 
federated environment.  

Data sources in a federated environment change 
over time— data management systems are modified, 
data models and ontologies are changed, new datasets 
are gathered, and existing datasets are updated. 
Federated databases are often managed by different 
groups; a group may modify their database without 
informing other groups, causing inconsistencies and 
breaking dependencies within the federated 
environment. Errors may arise from both human 
mistakes and faults in the software. For example, 
updates to data may introduce hard-to-detect errors. 
Indeed, such errors occurred in one of our studies, 
when a subset of the clinical database we accessed 
remotely was updated erroneously, replacing old 
diagnosis values with new values that did not match the 

known progression of the disease. Detecting and 
tracking this and other types of errors (Section 2 
describes additional examples of errors) manually in a 
federated environment is impractical, and their   
presence can seriously compromise the results of a 
clinical research project.   

Some databases and ETL (Extract, Translate, 
Load) processes implement data quality and error 
checks. In practice, however, most implementations are 
done as one-off solutions via low-level scripts and 
programs, which can be difficult to extend or modify 
for new datasets and additional tests. Moreover, these 
implementations are targeted at a single instance of a 
resource and are not designed to test a federated 
environment. Our goal is to address these challenges by 
developing and evaluating a framework that can 
support systematic testing of the data integrity and 
correct operation of federated environments.  

Our framework has two main elements: a test 
model, representing constraints on and dependencies 
between datasets and data sources in the federated 
environment, and a family of testing techniques that 
leverage the model to test data integrity and accuracy 
of the environment. The test model is a set of rules 
derived from (1) data models of individual data sources 
and constraints expressed in the data models, (2) 
relationships among different data models and data 
sources, (3) business processes (e.g., study protocols), 
(4) user-defined rules and constraints, and (5) rules and 
constraints based on domain knowledge. The testing 
techniques are driven by the test model and assess the 
federated environment by (1) identifying relevant test 
scenarios for the environment, (2) creating test cases 
that realize such scenarios, (3) generating (when 
needed) suitably tagged synthetic data to enable the 
scenarios, and (4) executing the generated test cases. 

2. Motivation and Objective   

Our effort is motivated mainly by translational research 
projects supported by the Atlanta Clinical and 
Translational Science Institute (ACTSI), a multi-
institutional partnership funded by the NIH Clinical 
and Translational Science Awards program. A common 
theme among a wide range of studies undertaken by 
ACTSI investigators is that biomedical data are 
captured at multiple locations and stored in different 
systems (e.g., multiple i2b2 [5] instances) hosted by 
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partnering institutions. It is worth noting that many of 
the research scenarios supported within ACTSI are 
common use cases in other clinical research efforts.  
 To illustrate the issues we target, we consider a 
specific example: the study of brain tumors conducted 
in the In Silico Brain Tumor Research Center 
(ISBTRC)1 through in silico experiments on data 
collected from a group of patients. Datasets for this 
study encompass high-throughput omics data, 
radiology and pathology image data, clinical data, such 
as diagnosis and survival, and tissue data. The datasets 
are obtained from public databases (e.g., Rembrandt2 
and The Cancer Genome Atlas3), derived from primary 
datasets (e.g., image analysis results), and collected 
from subjects at the collaborating institutions.  

In the course of the study, the primary datasets 
from public resources are downloaded to local clinical, 
imaging, and genomic databases for further analysis 
and cyclically updated to include new data. These 
datasets are expected to have gene expression, 
microarray, mRNA, and miRNA data, radiology and 
high-power light microscopy image data, and clinical 
diagnosis and survival outcome for each patient. For 
subjects at the collaborating institutions, tissue samples 
are collected following the study protocol. Microscopy 
image data are obtained from the tissue samples; two 
modalities of microscopy image data are captured at 
Emory (brightfield microscopy images by a pathology 
imaging group for every subject and quantum dot 
immunohistochemistry images by a nanotechnology 
center for some subjects). Each subject’s de-identified 
clinical information is maintained in a clinical data-
management system. Gene expression datasets are 
stored in a molecular database, whereas imaging data 
are managed in radiology and microscopy imaging 
databases. The primary datasets are analyzed using a 
suite of analysis algorithms and by human experts (in 
the case of image data). The omics analysis results are 
stored in a molecular database, whereas the image 
analysis results are stored in image markup and 
annotation databases.  

The data gathering and management processes in 
this study are complex and error prone, as they involve 
multiple points of data acquisition/generation and 
multiple data management systems. There are multiple 
sources of error. For example, in one case, an image 
was accidentally deleted, leaving analysis results 
obtained from that image unlinked to any image data. 
Errors may also arise due to incorrect identifiers and 
foreign-key relationships across different data 
generation points and systems. Different institutions 
and systems maintain local identifiers (e.g., de-

                                                             
1 http://cci.emory.edu/cms/projects/ISBTRC.html 
2 http://caintegrator-info.nci.nih.gov/rembrandt/ 
3 http://cancergenome.nih.gov/ 

identified specimen, patient, image identifiers), which 
need to be mapped to appropriate global identifiers and 
stored so that related data products can be linked and 
queried correctly. This is an error prone process.  If a 
system in the environment does not support such 
identifiers correctly, or mapping scripts are 
implemented incorrectly, join queries involving that 
system will return incorrect results. 

As we mentioned in the Introduction, updates to 
data may introduce hard-to-detect errors. An erroneous 
update to some of the clinical data in our study, for 
instance, resulted in incorrect diagnosis values that 
conflicted with the expected progression of the disease. 
This is an example of the kind of domain knowledge 
that a testing framework should incorporate and check.  

As a final example, a time consuming inspection 
of the datasets from the public repositories revealed 
that some of the required data for some subjects were 
missing (e.g., image data). The TCGA study included a 
set of manual annotations generated by a set of 
neuropathologists; this process depended on the 
availability of digitized glass slides. In an early in silico 
experiment, we sought to replicate the results generated 
by the neuropathologists using a set of custom-
developed computer algorithms. We eventually 
discovered that not all images for slides used in the 
manual annotations were available for download on the 
TCGA website, which led to an extremely labor 
intensive process to track down additional slides. Our 
framework would be able to capture such a discrepancy 
early in the process, by checking for the presence of 
data based on the study protocol requirements, and 
notify the users of the issue. 

 The goal of our testing framework is to be able to 
detect and report these types of errors using a suite of 
techniques that combine domain knowledge, modeling, 
and software testing methods. 

 
3. Approach 

Figure 1 provides a depiction of our framework, which 
consists of a set of testing techniques and a test model 
that are tightly integrated. In addition, it contains a 
data-mining element, which can provide support for 
extracting rules from the federated environment. In this 
framework, test cases are run both offline, before 
deployment, and online, to monitor whether changes to 
the environment violate any of the dependencies or 
constraints encoded in the identified rules. 

3.1. Test Model 

The test model is used to provide a specification of the 
expected correct state and function of a federated 
environment. It describes constraints, dependencies, 
and relationships imposed on data and resources. Our 
approach draws from the principles and practices 
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implemented in frameworks for data and systems 
interoperability [6]. The key components of these 
frameworks are system specifications (based on static, 
functional, and behavioral semantics), conformance 
statements, and conformance assertions. Conformance 
statements are derived from specifications, and 
conformance assertions are evaluated against the 
conformance statements to assess the level of 
interoperability between systems. The test model in our 
case becomes a key to system specifications and 
statements expressed as a set of properties and rules in 
a semantic language (OWL and SWRL [7,8]). Testing 
techniques evaluate conformance assertions against the 
specifications and statements. We employ the notions 
of information, functional, and process semantics to 
create the test model for a given federated environment. 
 
3.1.1. Information Semantics 

Information semantics represent the set of properties 
and rules that can be derived from data models in 
individual databases and constraints associated with the 
data models. The first aspect of information semantics 
is the use of value domains and value sets to express 
permissible and non-permissible values for data 
elements. This aspect can be used to create rules to 
express data value constraints. For example, if a data 
attribute maintains values on a patient’s height, it may 
have been assigned a value set of [1,8] feet. In that 
case, the test model could include the following 
corresponding set of rules: AttrX.domain=numerical; 
AttrX.unit=foot; AttrX.range =[1,8]. 

Another relevant aspect of information semantics 
is the description of relationships between data models 
within and across databases. In our framework, this 
aspect results in rules that describe how data elements 
in different databases are related, whether they are used 
to store semantically equivalent data, and so on. For 
example, a rule stating that “Attribute X in Database A 

is the same as Attribute Y in Database B,” 
encoded as 
haveSameValue(DB_A,AttrX,DB_B,AttrY), 

could be created to express that the two 
attributes should have the same value.   

A third aspect of information 
semantics is the incorporation of domain 
knowledge. As our understanding of 
biological systems and diseases progresses, 
certain relationships, hierarchies, and 
axioms are deemed as domain facts and 
incorporated into ontologies representing 
domain knowledge. The test model makes 
use of domain ontologies to express rules 
that describe constraints and relationships 
derived from the domain knowledge. For 
instance, a domain ontology may define 

that “Stage II always follows Stage I, and Stage I never 
follows Stage II for disease Z,”. The test model then 
contains the rule 
∀t1>t2⇒DiseaseZ.Stage[t1]<DiseaseZ.Stage[t2], 
where t1 and t2 indicate timestamps. 

3.1.2. Functional Semantics 

Functional semantics describe the expected behavior of 
a system (e.g., error conditions, returns on successful 
invocation of the system) when it is interacted with. In 
our case, functional semantics are used to define rules 
on the behavior of the system for (1) data loads, 
updates, and deletes, (2) successful query executions, 
and (3) error conditions. For instance, if new object 
identifiers should be generated, when new data objects 
are loaded to a system, a rule expressing which 
identifiers should or should not be generated can be 
defined as part of the test model. 

3.1.3. Process Semantics 

Process semantics describe business processes and 
relationships between databases and systems that are 
not part of information and functional semantics. For 
example, in the study described in Section 2, the study 
protocol corresponds to the business processes. The 
protocol describes which data should be obtained for 
each patient and how many instances of a given data 
type should be gathered. The process semantics of 
acquiring microscopy imaging data can lead to a rule 
stating that “an image data item for the in silico brain 
tumor study must be of type InSilicoImageData, have 
two bright-field H&E whole-slide images, and have 
two quantum-dot images.” (For clarity, we show these 
rules in natural language.) Another rule may combine 
the image data with other data types for the brain tumor 
study: “A dataset for the in-silico brain tumor study 
must contain data items of type InSilicoImageData, 
patient survival data, sequence data, and mRNA data.” 

 
Figure 1: Intuitive view of the proposed framework. 
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This set of rules can be used to evaluate if the 
necessary data elements have been collected for a 
subject in the brain tumor study. In our framework, 
process semantics is also employed to derive user-
defined rules on dependencies and relationships among 
two or more databases. For instance, a rule can be 
defined to specify that: “if there are image-annotation 
results in the image-annotations database, there must be 
a corresponding image in the image database.” 

We have identified these three components for test 
model creation based on our experience with several 
use cases. Our main goal with the test model is to 
provide a high-level mechanism for users and 
developers to represent constraints, dependencies, and 
relationships. Nevertheless, we are building the testing 
system such that application-specific test scripts can be 
executed for cases the test model is not sufficient. 

 We plan to examine automated mechanisms and 
data mining to create rules from data models, datasets, 
and domain knowledge. Some rules in the test model 
can automatically be derived from the data models. For 
example, schema constraints on associations could be 
used to describe rules on such associations. In data 
models where data elements are semantically 
annotated, and associated with value sets for 
permissible or non-permissible values, rules could be 
created on such value sets to describe constraints on the 
data elements. Data mining may also be applied to 
identify strong correlations among the data that can 
indicate the presence of latent rules. Such inferred rules 
may be used to identify anomalies in the data -- data 
mining was successfully used to this end in previous 
work (e.g., [11,12]).  
 
3.2. Testing Techniques 

Our main goal is to assess the integrity and accuracy of 
the environment’s data sources and datasets with 
respect to the rules in the test model. In this section, we 
describe how our approach accomplishes this goal and 
illustrate its application on some of the examples from 
Section 3.1.  

3.2.1. Test Generation and Execution 

Tests are typically defined according to a given set of 
requirements (e.g., coverage of some code elements). 
In our case, the key aspects to be tested are the data 
elements and the rules defined over them. Thus, the 
starting point for our approach is the test model. More 
precisely, our approach analyzes the test model to 
identify relevant data elements, discover the rules 
involving such elements, and generate testing 
requirements (and ultimately tests) based on such rules. 
The specific kind of tests generated depends on the 
type of rule being analyzed. Consider, for instance, the 
rules presented in Section 3.1.1. The analysis of rule 

haveSameValue(DB_A,AttrX,DB_B,AttrY) would result 
in offline tests that check that “for corresponding 
elements a and b in Databases A and B, respectively, 
a.X and b.Y must have the same value.” (The specific 
number of tests generated would depend on the amount 
of resources available for testing.) The framework can 
instantiate these tests and run them on the databases 
automatically, so as to identify and report violation of 
this rule. Another example is provided by rule 
∀t1>t2⇒DiseaseZ.Stage[t1]<DiseaseZ.Stage[t2]. In 
this case, the analysis of the rule would result in a set 
of online tests that would be implemented as runtime 
monitors deployed on the federated datasets. The 
monitors would be triggered by changes that affect the 
value of one or more DiseaseZ.Stage fields, would 
check that the new value of the fields is greater than the 
old values, and report a problem if this is not the case. 
3.2.2. Data Generation 

In some cases, real datasets may be inadequate and 
prevent some of the tests from being run. For example, 
a test that checks whether n types of data collected 
from m different databases are aggregated correctly 
may need data of exactly the right types in the different 
databases involved, and this data may not be present. 
Moreover, for some more sophisticated tests, data with 
a specific distribution may be needed. Finally, in cases 
where an accurate test oracle is defined, differential 
testing may be needed to assess the outcome of a test. 

When generating synthetic data sets, the data must 
typically have characteristics representative of real data 
and cannot be simply randomly generated. We will 
leverage existing techniques for generating meaningful, 
valid synthetic data (e.g., [9,10]) and will extend them 
to support distributed data sources. Our framework will 
use information about relationships and dependencies 
among database schemas, generate synthetic datasets 
according to this information and on the generated 
tests, and populate data across the distributed 
databases. As an example of this scenario, consider 
another rule from Section 3.1: 
AttrX.domain=numerical; AttrX.unit=foot; AttrX.range 
=[1,8]. To execute a test that targets this rule, the 
framework may need to add to a database suitably 
tagged synthetic patients, whose AttrX’s value violates 
the domain, unit, or range constraints. 

4. Current State of Testing Framework 

We are in the process of implementing a prototype of 
our framework. Presently, we are building a brain 
tumor translational informatics test bed that contains a 
wide range of real data from the brain tumor study 
described in Section 2. The datasets come from the 
TCGA3, Rembrandt2, and NBIA4 data repositories and 

                                                             
4 National Biomedical Imaging Archive http://imaging.nci.nih.gov 

25



  

from Emory University, Thomas Jefferson University, 
and Henry Ford Hospital (three of the collaborating 
institutions in ISBTRC1). Table 1 lists the datasets and 
data management systems for the test bed. The data 
management systems will be deployed on a set of 
virtual machines for easier portability and distributed 
deployment. The test bed will allow us to create 
scenarios for various types of errors, such as incorrect 
mappings from local identifiers to global identifiers 
(i.e., foreign key relationships – the molecular, 
imaging, and clinical data stored in different systems 
should be linked through subject and/or specimen 
identifiers), missing data with respect to the study 
protocol (e.g., missing whole slide images for some 
patients), and updates to invariant data elements (e.g., 
disease diagnoses, dates of death). In parallel, we are 
incrementally building our test model by defining rules 
for properties, constraints, and relationships among the 
databases in the study. We have defined several rules 
using OWL and SWRL for immutable data elements, 
the study protocol, and foreign key relationships. Our 
test bed will eventually provide the end users with (1) a 
set of test cases that are automatically generated using 
the test model, (2) a method to automatically execute 
the test cases, and (3) a report of the test outcome for 
users.   

5. Conclusion 

Testing is often overlooked in federated settings and 
accomplished via one-off implementations. An 
integrated middleware framework can provide a cost-
effective solution to this problem. Such a framework 
should enable researchers and database administrators 
to: (1) specify a description of the correct state and 
function of the system as a set of rules expressing 
dependencies, relationships, and constraints on data 
sources and datasets; and (2) create, based on the 
identified set of rules, relevant test scenarios for the 
federated environment, test cases that realize such 
scenarios, and suitably tagged synthetic data, when the 
existing data are not sufficient. 

Type of Dataset Data Management System 

Neuroimaging Data 

Radiology images in DICOM 
format, imaging metadata 

Virtual PACS5, xNAT6 

Manual annotations provided by 
neuroradiologists 

AIME5,7  

Molecular Data 

mRNA, miRNA, methylation 
data, copy number, sequence data 

in-house developed database 
with file system for data files 

                                                             
5 https://cabig.nci.nih.gov/tools/IMAG_Middleware 
6 eXtensible Neuroimaging Archive Toolkit, http://xnat.org 
7 Annotation and Image Markup, https://cabig.nci.nih.gov/tools/AIM 

Clinical Data 

Clinical data (including days to 
death, diagnosis, year of initial 
pathologic diagnosis), specimen 
(e.g., sample type), etc., data 

i2b28, in-house developed 
database 

Pathology Data 

Whole slide microscopy images as 
20x and 40x magnification, image 
metadata 

caMicroscope9 

Computer- and human-generated 
annotations of pathology images 

PAIS10 

Table 1: Datasets and data management systems in the 
test bed. 
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