

An Informatics Framework for Testing Data Integrity and
Correctness of Federated Biomedical Databases

Mijung Kim,1 Tahsin Kurc,2 Alessandro Orso,1 Jake Cobb,1

David Gutman2, Mary Jean Harrold,1 Andrew Post,2 Ashish Sharma,2 Joel Saltz2
1College of Computing, Georgia Institute of Technology, Atlanta, GA

2Center for Comprehensive Informatics, Emory University, Atlanta, GA
Abstract

Clinical research is increasingly relying on
information gathered and managed in different
database systems and institutions. Distributed data
collection and management processes in such settings
can be extremely complex and lead to a range of issues
involving the integrity and accuracy of the distributed
data. To address this challenge, we propose a
middleware framework for assessing the data integrity
and correctness in federated environments. The
framework has two main elements: (1) a test model
describing the dependencies between and constraints
on data sources and datasets, and (2) a family of
testing techniques that create and execute test cases
based on the model.

1. Introduction

A growing number of studies gather and manage
information from multiple data types and sources.
Logistics, regulations, and data-analysis requirements
may not always allow for centralized data gathering
and management. Data may be collected from patients
recruited at multiple institutions. Even within an
institution, data may be collected and processed by
different laboratories because of instrumentation and
analysis requirements. Federated systems have been
developed and employed [1,2,3,4] for these types of
studies to support distributed data access and analysis
requirements. An important component that is missing
in most existing systems is a middleware framework
for testing the data integrity and correct operation of a
federated environment.

Data sources in a federated environment change
over time— data management systems are modified,
data models and ontologies are changed, new datasets
are gathered, and existing datasets are updated.
Federated databases are often managed by different
groups; a group may modify their database without
informing other groups, causing inconsistencies and
breaking dependencies within the federated
environment. Errors may arise from both human
mistakes and faults in the software. For example,
updates to data may introduce hard-to-detect errors.
Indeed, such errors occurred in one of our studies,
when a subset of the clinical database we accessed
remotely was updated erroneously, replacing old
diagnosis values with new values that did not match the

known progression of the disease. Detecting and
tracking this and other types of errors (Section 2
describes additional examples of errors) manually in a
federated environment is impractical, and their
presence can seriously compromise the results of a
clinical research project.

Some databases and ETL (Extract, Translate,
Load) processes implement data quality and error
checks. In practice, however, most implementations are
done as one-off solutions via low-level scripts and
programs, which can be difficult to extend or modify
for new datasets and additional tests. Moreover, these
implementations are targeted at a single instance of a
resource and are not designed to test a federated
environment. Our goal is to address these challenges by
developing and evaluating a framework that can
support systematic testing of the data integrity and
correct operation of federated environments.

Our framework has two main elements: a test
model, representing constraints on and dependencies
between datasets and data sources in the federated
environment, and a family of testing techniques that
leverage the model to test data integrity and accuracy
of the environment. The test model is a set of rules
derived from (1) data models of individual data sources
and constraints expressed in the data models, (2)
relationships among different data models and data
sources, (3) business processes (e.g., study protocols),
(4) user-defined rules and constraints, and (5) rules and
constraints based on domain knowledge. The testing
techniques are driven by the test model and assess the
federated environment by (1) identifying relevant test
scenarios for the environment, (2) creating test cases
that realize such scenarios, (3) generating (when
needed) suitably tagged synthetic data to enable the
scenarios, and (4) executing the generated test cases.

2. Motivation and Objective

Our effort is motivated mainly by translational research
projects supported by the Atlanta Clinical and
Translational Science Institute (ACTSI), a multi-
institutional partnership funded by the NIH Clinical
and Translational Science Awards program. A common
theme among a wide range of studies undertaken by
ACTSI investigators is that biomedical data are
captured at multiple locations and stored in different
systems (e.g., multiple i2b2 [5] instances) hosted by

22

partnering institutions. It is worth noting that many of
the research scenarios supported within ACTSI are
common use cases in other clinical research efforts.
 To illustrate the issues we target, we consider a
specific example: the study of brain tumors conducted
in the In Silico Brain Tumor Research Center
(ISBTRC)1 through in silico experiments on data
collected from a group of patients. Datasets for this
study encompass high-throughput omics data,
radiology and pathology image data, clinical data, such
as diagnosis and survival, and tissue data. The datasets
are obtained from public databases (e.g., Rembrandt2
and The Cancer Genome Atlas3), derived from primary
datasets (e.g., image analysis results), and collected
from subjects at the collaborating institutions.

In the course of the study, the primary datasets
from public resources are downloaded to local clinical,
imaging, and genomic databases for further analysis
and cyclically updated to include new data. These
datasets are expected to have gene expression,
microarray, mRNA, and miRNA data, radiology and
high-power light microscopy image data, and clinical
diagnosis and survival outcome for each patient. For
subjects at the collaborating institutions, tissue samples
are collected following the study protocol. Microscopy
image data are obtained from the tissue samples; two
modalities of microscopy image data are captured at
Emory (brightfield microscopy images by a pathology
imaging group for every subject and quantum dot
immunohistochemistry images by a nanotechnology
center for some subjects). Each subject’s de-identified
clinical information is maintained in a clinical data-
management system. Gene expression datasets are
stored in a molecular database, whereas imaging data
are managed in radiology and microscopy imaging
databases. The primary datasets are analyzed using a
suite of analysis algorithms and by human experts (in
the case of image data). The omics analysis results are
stored in a molecular database, whereas the image
analysis results are stored in image markup and
annotation databases.

The data gathering and management processes in
this study are complex and error prone, as they involve
multiple points of data acquisition/generation and
multiple data management systems. There are multiple
sources of error. For example, in one case, an image
was accidentally deleted, leaving analysis results
obtained from that image unlinked to any image data.
Errors may also arise due to incorrect identifiers and
foreign-key relationships across different data
generation points and systems. Different institutions
and systems maintain local identifiers (e.g., de-

1 http://cci.emory.edu/cms/projects/ISBTRC.html
2 http://caintegrator-info.nci.nih.gov/rembrandt/
3 http://cancergenome.nih.gov/

identified specimen, patient, image identifiers), which
need to be mapped to appropriate global identifiers and
stored so that related data products can be linked and
queried correctly. This is an error prone process. If a
system in the environment does not support such
identifiers correctly, or mapping scripts are
implemented incorrectly, join queries involving that
system will return incorrect results.

As we mentioned in the Introduction, updates to
data may introduce hard-to-detect errors. An erroneous
update to some of the clinical data in our study, for
instance, resulted in incorrect diagnosis values that
conflicted with the expected progression of the disease.
This is an example of the kind of domain knowledge
that a testing framework should incorporate and check.

As a final example, a time consuming inspection
of the datasets from the public repositories revealed
that some of the required data for some subjects were
missing (e.g., image data). The TCGA study included a
set of manual annotations generated by a set of
neuropathologists; this process depended on the
availability of digitized glass slides. In an early in silico
experiment, we sought to replicate the results generated
by the neuropathologists using a set of custom-
developed computer algorithms. We eventually
discovered that not all images for slides used in the
manual annotations were available for download on the
TCGA website, which led to an extremely labor
intensive process to track down additional slides. Our
framework would be able to capture such a discrepancy
early in the process, by checking for the presence of
data based on the study protocol requirements, and
notify the users of the issue.

 The goal of our testing framework is to be able to
detect and report these types of errors using a suite of
techniques that combine domain knowledge, modeling,
and software testing methods.

3. Approach

Figure 1 provides a depiction of our framework, which
consists of a set of testing techniques and a test model
that are tightly integrated. In addition, it contains a
data-mining element, which can provide support for
extracting rules from the federated environment. In this
framework, test cases are run both offline, before
deployment, and online, to monitor whether changes to
the environment violate any of the dependencies or
constraints encoded in the identified rules.

3.1. Test Model

The test model is used to provide a specification of the
expected correct state and function of a federated
environment. It describes constraints, dependencies,
and relationships imposed on data and resources. Our
approach draws from the principles and practices

23

implemented in frameworks for data and systems
interoperability [6]. The key components of these
frameworks are system specifications (based on static,
functional, and behavioral semantics), conformance
statements, and conformance assertions. Conformance
statements are derived from specifications, and
conformance assertions are evaluated against the
conformance statements to assess the level of
interoperability between systems. The test model in our
case becomes a key to system specifications and
statements expressed as a set of properties and rules in
a semantic language (OWL and SWRL [7,8]). Testing
techniques evaluate conformance assertions against the
specifications and statements. We employ the notions
of information, functional, and process semantics to
create the test model for a given federated environment.

3.1.1. Information Semantics

Information semantics represent the set of properties
and rules that can be derived from data models in
individual databases and constraints associated with the
data models. The first aspect of information semantics
is the use of value domains and value sets to express
permissible and non-permissible values for data
elements. This aspect can be used to create rules to
express data value constraints. For example, if a data
attribute maintains values on a patient’s height, it may
have been assigned a value set of [1,8] feet. In that
case, the test model could include the following
corresponding set of rules: AttrX.domain=numerical;
AttrX.unit=foot; AttrX.range =[1,8].

Another relevant aspect of information semantics
is the description of relationships between data models
within and across databases. In our framework, this
aspect results in rules that describe how data elements
in different databases are related, whether they are used
to store semantically equivalent data, and so on. For
example, a rule stating that “Attribute X in Database A

is the same as Attribute Y in Database B,”
encoded as
haveSameValue(DB_A,AttrX,DB_B,AttrY),

could be created to express that the two
attributes should have the same value.

A third aspect of information
semantics is the incorporation of domain
knowledge. As our understanding of
biological systems and diseases progresses,
certain relationships, hierarchies, and
axioms are deemed as domain facts and
incorporated into ontologies representing
domain knowledge. The test model makes
use of domain ontologies to express rules
that describe constraints and relationships
derived from the domain knowledge. For
instance, a domain ontology may define

that “Stage II always follows Stage I, and Stage I never
follows Stage II for disease Z,”. The test model then
contains the rule
∀t1>t2⇒DiseaseZ.Stage[t1]<DiseaseZ.Stage[t2],
where t1 and t2 indicate timestamps.

3.1.2. Functional Semantics

Functional semantics describe the expected behavior of
a system (e.g., error conditions, returns on successful
invocation of the system) when it is interacted with. In
our case, functional semantics are used to define rules
on the behavior of the system for (1) data loads,
updates, and deletes, (2) successful query executions,
and (3) error conditions. For instance, if new object
identifiers should be generated, when new data objects
are loaded to a system, a rule expressing which
identifiers should or should not be generated can be
defined as part of the test model.

3.1.3. Process Semantics

Process semantics describe business processes and
relationships between databases and systems that are
not part of information and functional semantics. For
example, in the study described in Section 2, the study
protocol corresponds to the business processes. The
protocol describes which data should be obtained for
each patient and how many instances of a given data
type should be gathered. The process semantics of
acquiring microscopy imaging data can lead to a rule
stating that “an image data item for the in silico brain
tumor study must be of type InSilicoImageData, have
two bright-field H&E whole-slide images, and have
two quantum-dot images.” (For clarity, we show these
rules in natural language.) Another rule may combine
the image data with other data types for the brain tumor
study: “A dataset for the in-silico brain tumor study
must contain data items of type InSilicoImageData,
patient survival data, sequence data, and mRNA data.”

Figure 1: Intuitive view of the proposed framework.

24

This set of rules can be used to evaluate if the
necessary data elements have been collected for a
subject in the brain tumor study. In our framework,
process semantics is also employed to derive user-
defined rules on dependencies and relationships among
two or more databases. For instance, a rule can be
defined to specify that: “if there are image-annotation
results in the image-annotations database, there must be
a corresponding image in the image database.”

We have identified these three components for test
model creation based on our experience with several
use cases. Our main goal with the test model is to
provide a high-level mechanism for users and
developers to represent constraints, dependencies, and
relationships. Nevertheless, we are building the testing
system such that application-specific test scripts can be
executed for cases the test model is not sufficient.

 We plan to examine automated mechanisms and
data mining to create rules from data models, datasets,
and domain knowledge. Some rules in the test model
can automatically be derived from the data models. For
example, schema constraints on associations could be
used to describe rules on such associations. In data
models where data elements are semantically
annotated, and associated with value sets for
permissible or non-permissible values, rules could be
created on such value sets to describe constraints on the
data elements. Data mining may also be applied to
identify strong correlations among the data that can
indicate the presence of latent rules. Such inferred rules
may be used to identify anomalies in the data -- data
mining was successfully used to this end in previous
work (e.g., [11,12]).

3.2. Testing Techniques

Our main goal is to assess the integrity and accuracy of
the environment’s data sources and datasets with
respect to the rules in the test model. In this section, we
describe how our approach accomplishes this goal and
illustrate its application on some of the examples from
Section 3.1.

3.2.1. Test Generation and Execution

Tests are typically defined according to a given set of
requirements (e.g., coverage of some code elements).
In our case, the key aspects to be tested are the data
elements and the rules defined over them. Thus, the
starting point for our approach is the test model. More
precisely, our approach analyzes the test model to
identify relevant data elements, discover the rules
involving such elements, and generate testing
requirements (and ultimately tests) based on such rules.
The specific kind of tests generated depends on the
type of rule being analyzed. Consider, for instance, the
rules presented in Section 3.1.1. The analysis of rule

haveSameValue(DB_A,AttrX,DB_B,AttrY) would result
in offline tests that check that “for corresponding
elements a and b in Databases A and B, respectively,
a.X and b.Y must have the same value.” (The specific
number of tests generated would depend on the amount
of resources available for testing.) The framework can
instantiate these tests and run them on the databases
automatically, so as to identify and report violation of
this rule. Another example is provided by rule
∀t1>t2⇒DiseaseZ.Stage[t1]<DiseaseZ.Stage[t2]. In
this case, the analysis of the rule would result in a set
of online tests that would be implemented as runtime
monitors deployed on the federated datasets. The
monitors would be triggered by changes that affect the
value of one or more DiseaseZ.Stage fields, would
check that the new value of the fields is greater than the
old values, and report a problem if this is not the case.
3.2.2. Data Generation

In some cases, real datasets may be inadequate and
prevent some of the tests from being run. For example,
a test that checks whether n types of data collected
from m different databases are aggregated correctly
may need data of exactly the right types in the different
databases involved, and this data may not be present.
Moreover, for some more sophisticated tests, data with
a specific distribution may be needed. Finally, in cases
where an accurate test oracle is defined, differential
testing may be needed to assess the outcome of a test.

When generating synthetic data sets, the data must
typically have characteristics representative of real data
and cannot be simply randomly generated. We will
leverage existing techniques for generating meaningful,
valid synthetic data (e.g., [9,10]) and will extend them
to support distributed data sources. Our framework will
use information about relationships and dependencies
among database schemas, generate synthetic datasets
according to this information and on the generated
tests, and populate data across the distributed
databases. As an example of this scenario, consider
another rule from Section 3.1:
AttrX.domain=numerical; AttrX.unit=foot; AttrX.range
=[1,8]. To execute a test that targets this rule, the
framework may need to add to a database suitably
tagged synthetic patients, whose AttrX’s value violates
the domain, unit, or range constraints.

4. Current State of Testing Framework

We are in the process of implementing a prototype of
our framework. Presently, we are building a brain
tumor translational informatics test bed that contains a
wide range of real data from the brain tumor study
described in Section 2. The datasets come from the
TCGA3, Rembrandt2, and NBIA4 data repositories and

4 National Biomedical Imaging Archive http://imaging.nci.nih.gov

25

from Emory University, Thomas Jefferson University,
and Henry Ford Hospital (three of the collaborating
institutions in ISBTRC1). Table 1 lists the datasets and
data management systems for the test bed. The data
management systems will be deployed on a set of
virtual machines for easier portability and distributed
deployment. The test bed will allow us to create
scenarios for various types of errors, such as incorrect
mappings from local identifiers to global identifiers
(i.e., foreign key relationships – the molecular,
imaging, and clinical data stored in different systems
should be linked through subject and/or specimen
identifiers), missing data with respect to the study
protocol (e.g., missing whole slide images for some
patients), and updates to invariant data elements (e.g.,
disease diagnoses, dates of death). In parallel, we are
incrementally building our test model by defining rules
for properties, constraints, and relationships among the
databases in the study. We have defined several rules
using OWL and SWRL for immutable data elements,
the study protocol, and foreign key relationships. Our
test bed will eventually provide the end users with (1) a
set of test cases that are automatically generated using
the test model, (2) a method to automatically execute
the test cases, and (3) a report of the test outcome for
users.

5. Conclusion

Testing is often overlooked in federated settings and
accomplished via one-off implementations. An
integrated middleware framework can provide a cost-
effective solution to this problem. Such a framework
should enable researchers and database administrators
to: (1) specify a description of the correct state and
function of the system as a set of rules expressing
dependencies, relationships, and constraints on data
sources and datasets; and (2) create, based on the
identified set of rules, relevant test scenarios for the
federated environment, test cases that realize such
scenarios, and suitably tagged synthetic data, when the
existing data are not sufficient.

Type of Dataset Data Management System

Neuroimaging Data

Radiology images in DICOM
format, imaging metadata

Virtual PACS5, xNAT6

Manual annotations provided by
neuroradiologists

AIME5,7

Molecular Data

mRNA, miRNA, methylation
data, copy number, sequence data

in-house developed database
with file system for data files

5 https://cabig.nci.nih.gov/tools/IMAG_Middleware
6 eXtensible Neuroimaging Archive Toolkit, http://xnat.org
7 Annotation and Image Markup, https://cabig.nci.nih.gov/tools/AIM

Clinical Data

Clinical data (including days to
death, diagnosis, year of initial
pathologic diagnosis), specimen
(e.g., sample type), etc., data

i2b28, in-house developed
database

Pathology Data

Whole slide microscopy images as
20x and 40x magnification, image
metadata

caMicroscope9

Computer- and human-generated
annotations of pathology images

PAIS10

Table 1: Datasets and data management systems in the
test bed.

Acknowledgements. Partially funded by: Federal funds from
the National Cancer Institute; National Institutes of Health Contracts
HHSN261200800001E, 94995NBS23, and 85983CBS43; NIH PHS
Grants (UL1 RR025008, KL2 RR025009 or TL1 RR025010) from
the CTSA program of NCRR; NHLBI R24 HL085343; NIH U54
CA113001; NLM R01LM009239-01A1, and BISTI P20 EB000591;
NSF award CCF-0725202.

References

1. Grethe J.S. et al., Biomedical Informatics Research
Network: Building a National Collaboratory to Hasten the
Derivation of New Understanding and Treatment of Disease.
Stud Health Technol Inform, 2005, 112: p. 100-109.
2. Oster, S. et al., caGrid 1.0: An Enterprise Grid
Infrastructure for Biomedical Research. Journal of American
Medical Inf. Assoc. (JAMIA), 2008, 15(2): p. 138-149.
3. von Eschenbach, A.C. and K. Buetow, Cancer Informatics
Vision: caBIG. Cancer Inform., 2006, 2: p. 22–24.
4. CardioVascular Research Grid. http://cvrgrid.org, 2011.
5. Mendis, M. et al., Integration of Hive and Cell Software in
the i2b2 Architecture. AMIA Annual Symp., 2007: p. 1048.
6. Service-aware Interoperability Framework (SAIF).
https://wiki.nci.nih.gov/display/SAIF/CBIIT+SAIF+Wiki,
2011.
7. Web Ontology Language. http://www.w3.org/TR/owl-
features/, 2011.
8. A Semantic Web Rule Language (SWRL). http://
www.w3.org/Submission/SWRL/, 2011.
9. Chays, D., et al., A Framework for Testing Database
Applications. ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2000: p. 147-157.
10. Chays, D., et al., An AGENDA for Testing Relational
Database Applications: Research Articles. Software Testing
Verification, and Reliability, 2004, 14(1): p. 17-44.
11. Orso, A. et al., Techniques for Classifying Executions of
Deployed Software to Support Software Engineering Tasks.
IEEE Trans. on Soft. Eng., 2007, 33(5): p. 287-304.
12. Engler, D., et al., Bugs as Deviant Behavior: A General
Approach to Inferring Errors in Systems Code. ACM
Symposium on Operating Systems Principles, 2001: p. 57-72.

8 Informatics for Integrating Biology & Bedside http://i2b2.org
9 https://cabig.nci.nih.gov/tools/caMicroscope
10 Pathology Analytical Imaging Standards
https://web.cci.emory.edu/confluence/display/PAIS/Algorithm+Valid
ation

26

