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Abstract

The lack of description of a given program
code acts as a big hurdle to those develop-
ers new to the code base for its understand-
ing. To tackle this problem, previous work on
code summarization, the task of automatically
generating code description given a piece of
code reported that an auxiliary learning model
trained to produce API (Application Program-
ming Interface) embeddings showed promis-
ing results when applied to a downstream,
code summarization model. However, differ-
ent codes having different summaries can have
the same set of API sequences. If we train
a model to generate summaries given an API
sequence, the model will not be able to learn
effectively. Nevertheless, we note that the
API sequence can still be useful and has not
been actively utilized. This work proposes a
novel multi-task approach that simultaneously
trains two similar tasks: 1) summarizing a
given code (code to summary), and 2) sum-
marizing a given API sequence (API sequence
to summary). We propose a novel code-level
encoder based on BERT capable of express-
ing the semantics of code, and obtain repre-
sentations for every line of code. Our work
is the first code summarization work that uti-
lizes a natural language-based contextual pre-
trained language model in its encoder. We eval-
uate our approach using two common datasets
(Java and Python) that have been widely used
in previous studies. Our experimental results
show that our multi-task approach improves
over the baselines and achieves the new state-
of-the-art.

1 Introduction

Developers spend the most time writing code but
not much in writing its description. It is reported
that much of the developers’ code does not have
any description (Hu et al., 2018b). This has detri-
mental effects on other developers who will be
reading and trying to understand the code base

/**
* Returns area by name

*/
public int getAreaByName(String name) {

return getArea(name);
}

(a) Code 1 having API Sequence getArea

/**
* Returns twice the area given a name

*/
public int getTwiceAreaByName(String buildingName) {

return getArea(buildingName) * 2;
}

(b) Code 2 having API Sequence getArea

Figure 1: Code 1 and Code 2 implement different func-
tionalities but use the same API sequence.

(Wei et al., 2019). To alleviate effort in writing the
code description, code summarization, the task of
automatically generating code description given a
piece of code, has been proposed in the software en-
gineering and AI community (Haiduc et al., 2010;
Moreno et al., 2013; Iyer et al., 2016; Hu et al.,
2018a).

Previous work on code summarization using an
auxiliary model trained to produce API (Applica-
tion Programming Interface) embeddings showed
promising results when applied to a separate code
summarization model (Hu et al., 2018b). However,
different code may assume the same set of API
sequence. For example, Figure 1a and 1b show
two different code snippets having the same API
sequence, getArea. Despite having the same API
sequence, the code summary shown in the com-
ments on top is different: Figure 1a is about getting
an area given a name, while Figure 1b is about dou-
bling an area. Thus, training a model to summarize
the given code based on its API sequence may in-
duce confusion into the model. Nevertheless, we
note that the API sequence can still be useful and
has not been actively explored.



In this work, we further leverage the API se-
quence for code summarization. Specifically, we
propose a novel multi-task approach that simultane-
ously trains two similar tasks: 1) code to summary,
and 2) API sequence to summary. Our model con-
sists of an encoder-decoder architecture. That is,
we propose a novel code-level encoder based on
BERT (Devlin et al., 2019), which has recently
shown remarkable improvement in numerous NLP
downstream tasks. Our encoder is able to express
the semantics of code and obtain modeling for ev-
ery line of code. Our work is also the first code sum-
marization work that utilizes a natural language-
based contextual pre-trained language model in its
encoder. For multi-task learning, the two differ-
ent tasks utilize the same set of shared layers that
produce contextual embeddings to further train the
individual tasks.

We evaluate our approach on two popular
datasets (Java and Python) that have been widely
used in previous studies. Our experimental results
show that by learning to identify lines of code, our
model is able to learn more effectively. Further-
more, our multi-task approach improves over the
baselines and achieves the new state-of-the-art per-
formance.

In summary, our key contributions include:

• A novel multi-task learning model that con-
sists of two different but semantically simi-
lar tasks of generating summaries from either
code and API sequence.

• A novel approach of representing lines of code
that leads to improved performance.

• Experimental results compared with baselines
that achieve state-of-the-art performance in
code summarization.

2 Related Work

Most existing approaches that perform code sum-
marization using neural networks define the output
task to be a sequence generation (Iyer et al., 2016;
Hu et al., 2018a,b; Liang and Zhu, 2018). These ap-
proaches leverage recurrent encoder-decoder mod-
els with attention mechanisms. One prior work
proposed a new convolutional attention model for
code summarization that outputs short name-like
summaries (Allamanis et al., 2016). Different from
this previous work, our work is a multi-task (Code

to Summary and API Sequence to Summary) ap-
proach that utilizes a contextual pre-trained lan-
guage model in the area of code summarization.

There has been research that leverages source
code representation for code summarization. A
number of recent work transforms the source code
into Abstract Syntax Tree (AST) and encodes it
using TreeTransformer (Harer et al., 2019), Tree-
LSTM (Shido et al., 2019), and Graph Neural
Networks (LeClair et al., 2020). Another prior
work has improved the code summarization using
the AST by flattening it into a sequence through
structure-based traversal (Hu et al., 2018a). Later
work further improved the model by proposing a
representation that decouples the code structure
from structure-based traversal (LeClair et al., 2019).
Our work leverages a more readable and simplified
structure than AST by tokenizing every line of code
(e.g., [CLS]int i = 0[SEP]).

Other existing work leverages various learning
techniques such as reinforcement learning (Wan
et al., 2018), dual learning (Wei et al., 2019), and
retrieval-based techniques (Zhang et al., 2020) to
build the code summarization models. Recent work
leverages a transformer model to generate natural
language summary (Ahmad et al., 2020). In con-
trast, our work uses a pre-trained language model
as a code-level encoder.

A previous technique uses API usage informa-
tion that enhances the code summarization model,
showing the effectiveness of the knowledge from
API sequence (Hu et al., 2018b). We noted the
exploration of API sequence in code summariza-
tion is limited. Although multiple different codes
can have the same API sequence and the API se-
quence may not contain the full information of
the code, the API sequence can directly provide
more structural information of the code, e.g., the
data type used, and their sequences. This can be
viewed as a friendlier/structured/cleaner intermedi-
ate representation. Though it may be lossy in the
code, such intermediate representation facilitates
the model training as we have empirically shown
that it is improving the model performance. Con-
trary to (Hu et al., 2018b), our work consists of a
multi-task approach that summarizes code as well
as API sequence. Our experiments show that this
multi-task approach is useful in learning a better
code-to-summary model.

There has been work that uses a dual task
model (Wei et al., 2019) in which one model is



Figure 2: Overview of the proposed approach. Different from the original BERT structure, we prefix every line of
code with a [CLS] symbol for learning the line of code representation. Each line of code also has a different type
of segment embeddings. Our experimental results showed that the differentiation among different lines of code
achieves a higher performance. Our decoder consists of a standard 6-layer Transformer decoder. On multi-tasking
learning, our proposed model consists of training two different but similar tasks: 1) Code to Summary Generation,
and 2) API sequence to Summary Generation.

trained in step s, and the other model is trained in
step s + 1. The result of the model in step s is
then used for the model in step s + 1. This cycle
keeps on repeating until convergence. Our work
does not require cycle dependency between two
models but simultaneously trains two tasks, which
is more efficient.

CodeBERT (Feng et al., 2020) and PYMT5
(Clement et al., 2020) present pre-trained models
by using a multi-layer bidirectional transformer
encoder (Feng et al., 2020) and a text-to-text trans-
fer transformer T5 (Clement et al., 2020), respec-
tively. CodeBERT (Feng et al., 2020) and PYMT5
(Clement et al., 2020) both support multiple down-
stream tasks such as code search (Feng et al., 2020),
code generation (Clement et al., 2020), and code
summarization (Feng et al., 2020; Clement et al.,
2020). Different from these techniques, our model
is designed for code summarization tasks specifi-
cally, thus provides better performance as our re-

sults show in Section 51. Furthermore, our pro-
posed approach can be combined with any pre-
trained models, other than BERT, potentially im-
proving upon their original performances.

3 Proposed Approach

As shown in Figure 2, our proposed model has a
common encoder-decoder architecture, consisting
of training two different but similar tasks: 1) Code
to Summary Generation, and 2) API sequence to
Summary Generation. Although we trained two
different tasks, our main task is Code to Summary
Generation. We first describe the encoder-decoder
architecture, followed by the multi-task learning
framework of the two tasks.

1For PYMT5, its data, model, and code are not publicly
available. Furthermore, to re-train PYMT5, it is computation-
ally very expensive to train as indicated in the PTMT5 paper
i.e., it requires 16 V100 GPU with 32GB VRAM trained for 3
weeks. Thus, we were unable to re-train PYMT5 on our end.



3.1 Encoder Architecture

The large-scale pre-trained language models have
shown remarkable performance in recent NLP stud-
ies. However, the use of such models is rarely stud-
ied in programming languages. In this work, we
explore the potential of a popular pre-trained lan-
guage model, BERT (Devlin et al., 2019). Specifi-
cally, we make use of the uncased base model. We
have previously conducted our experiments using
cased pre-trained models, taking into considera-
tion camel cases. However, the results are not bet-
ter than using uncased pre-trained models. Thus,
we have omitted them. We are aware of a recent
code representation model, CodeBERT (Feng et al.,
2020). However, there has been no study on how
a popular BERT-like structure that performs effec-
tively in downstream NLP tasks can be leveraged in
code summarization, given the language similarity
between programming languages and the English
language. In this study, we proposed the learning of
line of code representation in a BERT-like encoder
and showed that it achieves better performance than
a vanilla BERT encoder.

In the original BERT model, every sentence is
prefixed with the [CLS] token and ends with a
[SEP] token. We observed that the indentation of
code lines can have a special meaning for certain
programming languages. For example, combining
two different lines of code in Python may cause
errors. Thus, we believed that a model may be
able to train better if it can identify the line differ-
ence. In the encoder, our work models every line
of code distinctly by inserting an additional [CLS]
token at the start of every line of code. Similar to
vanilla BERT, [SEP] is appended as the last token
for every line of code. We use the original code
indentation and we do not further process the code
to conform to a certain indentation. In our early
experiment, we have attempted to model different
forms of whitespace indentation. However, these
modelings do not improve the overall model perfor-
mance. Thus, we exclude them in our final model
design. Additionally, all the code and summary are
lower-cased, and every non-alphanumerical symbol
in the code is treated as a separate token.

The input x = xj1, x
j
2, ..., x

j+1
1 , xj+1

2 ,

..., xj+n−1
m is a running sequence of code to-

kens that are arranged in lines of code (LOC)
beginning from the top of every method/function.
xji denotes the ith token of the jth line of code. For
example, Figure 3 shows a Java method consisting

public String printMyString () {
return "Hello World";

}

Figure 3: Example of a Java method

of three lines of code. The input will then be
processed as
[CLS] public string printmystring ( )

{ [SEP] [CLS] return " hello world " ;

[SEP] [CLS] } [SEP]

where public and string refer to the second and
the third token of the input (e.g., x12 and x13 in input
x above). Note that the first token of every line of
code (e.g., x11) is [CLS].

As shown in Figure 2, each token xi for line j
is assigned three kinds of embeddings: token em-
beddings, segmentation embeddings, and position
embeddings. Token embeddings refer to the se-
mantics of each token. Segmentation embeddings
are used to distinguish between different lines of
code. For example, for each LOC, the approach
assigns segment embeddings EA or EB depend-
ing on whether the line of code is even or odd, as
shown in Figure 2. Position embeddings indicate
the position of each token within the line of code.

These three embeddings are added to a single in-
put vector and fed into a bidirectional Transformer
with multiple layers, i.e.,

h̃l = LN(hl−1 + MHAtt(hl−1)) (1)

hl = LN(h̃l + FFN(h̃l)), (2)

where h0 = x is the input vectors. The superscript
l indicates the depth of the stacked layer. LN is
the layer normalization operation (Ba et al., 2016)
and MHAtt is the multi-head attention operation
(Vaswani et al., 2017). FFN is a Feed-Forward
Network. As a result, the encoder generates an
output vector Ti (shown in Figure 2) for each token
with rich contextual information.

3.2 Decoder Architecture
Our decoder is a six-layered Transformer (Vaswani
et al., 2017) initialized randomly. While our en-
coder is a pre-trained model, our decoder must be
trained from scratch. This makes fine-tuning of
BERT unsuitable. To mitigate this imbalance is-
sue, Adam optimizer (Kingma and Ba, 2015) with
different hyperparameter values β1 = 0.9 and β2 =
0.999 is used in the encoder and decoder, respec-
tively.



Additionally, different warm-up steps and learn-
ing rates are imposed in the encoder and decoder,
i.e.,

lrE = l̃rE ·min(step−0.5, step · warmup−1.5
E ) (3)

lrD = l̃rD ·min(step−0.5, step · warmup−1.5
D ), (4)

where lrE and lrD denote the learning rates for the
encoder and decoder, respectively, and warmupE
and warmupD denote the warmup steps for the
encoder and the decoder, respectively. lrE and
warmupE are initialized to 2e−3 and 20,000, re-
spectively, and lrD and warmupD are initialized
to 0.1 and 10,000 respectively. lrE and warmupE
are set lower than its decoder counterparts so that
the encoder can be trained with more accurate gra-
dients when the decoder is becoming stable (Liu
and Lapata, 2019). For every task, we set the same
learning rates and the warmup steps for both an
encoder and a decoder.

3.3 Multi-task Learning

Our multi-task learning approach is similar to one
designed for natural language (Liu et al., 2019).
The lower layers in Figure 2 indicate the shared
layers across all tasks, and the top layer represents
task-specific outputs. The shared layers contain
final contextual embeddings, which are the output
of multiple stacked transformer layers. The input
to the transformer layers is the summation of the
token embeddings, segment embeddings, and po-
sition embeddings. The task-specific layer uses a
transformer decoder for two different tasks where
the input to the decoder is the contextual embed-
dings from the shared layers.

Algorithm 1 illustrates our multi-task learning
procedure. During the multi-task learning, for ev-
ery mini-batch in Task #1 and Task #2, the model
is updated according to the objective of Task #1
and #2, respectively. Such setup has been reported
to be effective and approximately optimize the sum
of all multi-task objectives (Liu et al., 2019). We
describe Task #1 and Task #2 in detail as follows.

Task #1: Code to Summary Generation
This task takes the code as the input and gives
the summary as the target output. Each line of
code is further prefixed with the [CLS] token for
learning the line of code representation. The last
token for every line of code is [SEP]. We use the

Algorithm 1 TRAINING AN MT MODEL

1: for all mini-batch do
2: 1. Compute Loss: L(Θ)
3: L(Θ) = Eq. 5 for Task #1
4: L(Θ) = Eq. 6 for Task #2
5: 2. Compute gradient: ∇ (Θ)
6: 3. Update model: Θ = Θ -∇ (Θ)
7: end for

cross-entropy loss as the objective function, i.e.,

1

N

N∑
i=1

yT1
i log(ŷT1

i ), (5)

where yT1
i denotes the target token of the summary

at time step i for Task #1, and ŷT1
i denotes the prob-

ability of generating the token for Task #1 at time
step i. N is the total number of words generated.

Task #2: API sequence to Summary
Generation
Task #2 is similar to Task #1 except that instead
of taking every code token as input, API sequence
is used as input. Furthermore, our approach does
not distinguish between different lines of code in
Task #2, and the entire API sequence of a function
is treated as a single line of code. The objective
function is also set as the cross-entropy loss, i.e.,

1

N

N∑
i=1

yT2
i log(ŷT2

i ) (6)

where yT2
i denotes the target token of the summary

at time step i for Task #2, and ŷT2
i denotes the

probability of generating the token for Task #2
at time step i. N is the total number of words
generated.

4 Experimental Setup

This section describes the datasets used in our ex-
periments (Section 4.1), the different metrics used
in the automatic evaluation (Section 4.2), and the
qualitative evaluation (Section 4.3). The different
baselines are discussed in Section 4.4 and the hy-
perparameters to our models are listed in Section
4.5.

4.1 Datasets
We made use of two common datasets, Java (Hu
et al., 2018b) and Python (Miceli Barone and Sen-
nrich, 2017; Wan et al., 2018). They have been
widely used in previous work (Hu et al., 2018b;
Wan et al., 2018; Wei et al., 2019; Ahmad et al.,
2020). Each dataset consists of pairs of code and a



single sentence summary describing the code. All
the datasets were split distinctly into Train, Valida-
tion and Test set (shown in Table 1). We use the
exact same datasets in each split as previous stud-
ies (Wei et al., 2019; Ahmad et al., 2020) without
any alteration.
Java The Java methods and their summary were
collected from Java projects in Github from 2015
to 2016. The first sentence of every method in the
Javadoc was extracted to be the ground truth code
summary. As a result, each Java method forms a
<code, summary> pair. Following prior work (Gu
et al., 2016), the API sequence of a Java method
was collected by parsing the Java method using
Eclipse’s JDT compiler2, constructing an AST tree,
and extracting the API sequence represented in the
AST tree. The second column of Table 1 presents
the data statistics of Java.
Python The python functions and their summary
were collected from Python projects in Github in
2016. If a python function consists of a docstring,
the first sentence of the docstring is treated as the
ground truth code summary, and its corresponding
function forms the code of the summary. Similar
to Java, the Python code is first parsed into an AST
tree using asttokens3, which is a common library
for transforming python code into the AST form.
The API sequence of a Python function are then
extracted from the AST tree. The third column of
Table 1 shows the data statistics of Python.

Dataset Java Python
Train 69,708 55,538
Validation 8,714 18,505
Test 8,714 18,502
Unique tokens in code 66,650 307,596
Unique tokens in summary 46,895 56,189
Avg. tokens in code 120.16 47.98
Avg. tokens in summary 17.73 9.48

Table 1: Statistics of Java and Python datasets.

4.2 Metrics for Quantitative Analysis

We evaluate our approach using three widely used
metrics in code summarization, as follows.
BLEU (Papineni et al., 2002) quantifies the lexical
similarity of the generated summary to the ground
truth summary by counting the common n-grams.
METEOR (Banerjee and Lavie, 2005) mea-
sures the alignment between the generated and

2https://www.eclipse.org/jdt/
3https://pypi.org/project/asttokens/

the ground truth summary by exact, stem, syn-
onym, and paraphrase matches between words and
phrases.
ROUGE-L (Lin, 2004) measures the longest com-
mon subsequence overlap between the generated
and ground truth summary, and focuses on recall
scores.

4.3 Qualitative Analysis
We randomly select 200 generated summaries
along with their original code, 100 pairs each for
Java and Python, following similarly to prior re-
search (Liu and Lapata, 2019; Grusky et al., 2018).
Amazon Mechanical Turk (MTurk) workers were
hired to rate the quality of the generated summaries.
The MTurkers rated the summary voluntarily, and
for each rated summary, the MTurkers are given a
compensation of one cent. We used four common
criteria to evaluate the summarization quality (Liu
and Lapata, 2019):
Informativeness How well does the summary cap-
ture the key points of the code?
Relevance Are the details provided in the summary
consistent with details in the code?
Fluency Are the summaries well-written and gram-
matically correct?
Comprehension Can the summaries helps in un-
derstanding the code?
Three different workers were required to rate each
summary between one and five, where one is the
worst and five is the best. We also ask the MTurkers
for their Java/Python coding experience and if they
understand the generated summaries and code.

In addition to the MTurk surveys, we per-
formed additional analysis on the same set of code-
summary pairs as those reviewed by MTurkers.
The purpose is to further unravel the quality of
our generated summaries by investigating the dif-
ference between generated and ground-truth sum-
maries.

4.4 Baseline Models
We compare our approach with the following eight
baseline models as seen in Table 2.
CODE-NN (Iyer et al., 2016) uses token embed-
dings as source code embeddings, and the overall
model architecture is based on LSTM. Additionally,
it uses a global attention mechanism that computes
a weighted sum of the source code embeddings
during the decoding process.
Tree2Seq (Eriguchi et al., 2016) uses a tree-like
Sequence-to-Sequence model where the source



Model Java Python
BLEU METEOR ROUGE-L BLEU METEOR ROUGE-L

CODE-NN (Iyer et al., 2016) 27.60 12.61 41.10 17.36 9.29 37.81
Tree2Seq (Eriguchi et al. 2016) 37.88 22.55 51.50 20.07 8.96 35.64
RL+Hybrid2Seq (Wan et al., 2018) 38.22 22.75 51.91 19.28 9.75 39.34
DeepCom (Hu et al., 2018a) 39.75 23.06 52.67 20.78 9.98 37.35
API+CODE (Hu et al., 2018b) 41.31 23.73 52.25 15.36 8.57 33.65
Dual Model (Wei et al., 2019) 42.39 25.77 53.61 21.80 11.14 39.45
Transformer (Ahmad et al., 2020) 44.58 26.43 54.76 32.52 19.77 46.73
CodeBERT1 (Feng et al., 2020) 12.83 10.12 25.26 16.25 13.52 27.66
CodeBERT2 (Feng et al., 2020) 30.92 20.46 43.45 25.55 19.88 40.95
Ours w/o multi-task w/o LOC modeling 45.37 28.76 56.11 34.60 21.38 49.83
Ours w/o multi-task 46.27 28.40 56.68 35.01 22.34 50.10
Ours 47.15 30.38 57.21 35.48 22.64 50.88

Table 2: Comparison of our proposed approach with the baseline results. Our proposed model and ablation settings
are shown in the bottom three rows. Our proposed model and ablation settings consistently achieve the state-of-
the-art performance when compared with all the other baseline models in both the Java and Python datasets.

code is transformed into a structural tree represen-
tation, which is used as the input to the encoder.
RL+Hybrid2Seq (Wan et al., 2018) uses both
code and the Abstract Syntax Tree of the corre-
sponding code as the input to a Reinforcement
Learning model.
DeepCom (Hu et al., 2018a) also uses both code
and the Abstract Syntax Tree as input, but for a
general Sequence-to-Sequence model. For the at-
tention mechanism, it considers both code and Ab-
stract Syntax Tree.
API+CODE (Hu et al., 2018b) uses API sequence
and code summary to first train a Sequence-to-
Sequence model. A secondary model is then cre-
ated for the purpose of code to summary. In the
secondary model, if the code is an API, its embed-
dings would be borrowed from the first model.
Dual Model (Wei et al., 2019) trains two models
where the first model generates summary from code
and the second model generates code from sum-
mary. The training is a cyclic process where the
intermediate output of each trained model is used
as the input to the other model.
Transformer (Ahmad et al., 2020) uses a trans-
former architecture for encoding code and decod-
ing summary. In addition to encoding the absolute
position of each code token, it leverages a pairwise
relationship among all the code tokens via attention.
The combination of the positional encoding and the
pairwise relationship encoding forms a richer con-
textual positional vector.
CodeBERT (Feng et al., 2020) is a transformer-
based neural architecture model for representing
Programming Language (PL) and Natural Lan-
guage (NL). It can perform multiple different types

of downstream PL-NL tasks including code sum-
marization. We compare our results with two
CodeBERT variants, CodeBERT1 and CodeBERT2.
CodeBERT1 tunes CodeBERT’s Code Summariza-
tion task with CodeBERT’s own training and vali-
dation datasets while CodeBERT2 tunes with the
common training and validation datasets presented
in Table 1. For both, the default tuning settings rec-
ommended by the authors of CodeBERT are used.
In testing, we use the same common test datasets
in Table 1 for all models.

4.5 Hyperparameters

We applied dropout of probability 0.1 before all
linear layers and used label smoothing (Szegedy
et al., 2016) with smooth factor 0.1. During de-
coding, the beam size is set to 5. We follow prior
work (Wei et al., 2019; Ahmad et al., 2020) to set
the maximum length of code and summary to be
150 and 50, respectively. Other hyperparameters,
including the number of epochs, are tuned based on
the model performance on the validation set. All
experiments are conducted on eight NVIDIA RTX
2080 GPUs during the four-week-long period.

5 Results

We provide the automatic evaluation of the base-
line models and our proposed model in Section 5.1
followed by the human evaluation under Section
5.2. In addition to the human evaluation, we also
provide several examples for additional qualitative
analysis.



Java
/**
* Generated Summary:

* creates and adds a new layout panel

* Ground Truth Summary:

* lays out the panel

*/
private void initializeLayout(){

GridLayout gl = new GridLayout(0,2);
gl.setVgap(5);
setLayout(gl);
add(new JLabel("Frozen:"));
add(frozenDD);
add(new JLabel("UpperBound:"));
add(tfUpBound);
add(new JLabel("LowerBound:"));
add(tfLowBound);
add(new JLabel("Increment:"));
add(tfIncrement);
add(new JLabel("Delay:"));
add(tfDelay);
setBorder(
BorderFactory.createEmptyBorder(5,5,5,5));

}

Python
def ListAllKeys(store,

callback,
prefix=None, marker=None,
batch_size=1000):

"""
Generated Summary:
list all keys

Ground Truth Summary:
list all keys

"""
keys = []
done = False
while (not done):
new_keys = (yield gen.Task(
store.ListKeys,
prefix=prefix,
marker=marker,
maxkeys=batch_size))

keys.extend(new_keys)
if len(new_keys) < batch_size:
break

marker = new_keys[(-1)]
callback(keys)

Figure 4: Examples of generated summary by our proposed multi-task model. The generated summaries of our
proposed model have same semantics as the ground truth (human-written) summaries.

5.1 Quantitative Results

Table 2 shows the results of the baseline models
(row two to nine) and our proposed model with
two ablation settings (the bottom three rows). The
automatic scores for the Java dataset are shown in
columns two to four and for the Python dataset,
they are shown in columns five to seven. The table
shows that our proposed model and two ablation
settings have consistently achieved higher perfor-
mance than all the baseline models.

To evaluate the effectiveness of our LOC model-
ing and multi-task model discussed in Sections 3.1
and 3.3, respectively, we performed the ablation
study by running the experiments without these two
components. The second bottom row shows the re-
sult of our proposed model without the multi-task
component. This means that the model considers
only the single task for code to summary (i.e., Task
#1 in Figure 2) without the task of API sequence
to summary (i.e., Task #2 in Figure 2). The third
bottom row shows the result of our proposed model
without both multi-task and LOC modeling com-
ponents. The model without the LOC modeling
means that it treats the code as a contiguous se-
quence of tokens. In short, the comparison result
between the second and third bottom rows show the
effectiveness of our LOC modeling. The compari-
son result between the second and last bottom rows
shows the effectiveness of our multi-task model. In
the table, we omit the results of training a single-
task model on API sequence to summary because

different code may have the same API sequence,
thus the model would not be well-trained. We have
elaborated this with an illustration using Figures 1a
and 1b in Introduction.

Table 2 shows that by considering learning the
LOC modeling, the majority of the metrics are
improved. For example, in the Java dataset, two
(BLEU and ROUGE-L) out of three metrics in
“Ours w/o multi-task” show improvement over
“Ours w/o multi-task w/o LOC modeling”. In the
Python dataset, all three metrics have improved.
This suggests that our proposed LOC modeling is
effective. Furthermore, our proposed multi-task ap-
proach (last row in Table 2) scores the best perfor-
mance in both the Java and Python datasets, achiev-
ing the new state-of-the-art.

5.2 Qualitative Results

Figure 4 shows the qualitative examples of the gen-
erated summaries. The first column consists of an
example of Java – the creation of GridLayout. Al-
though the generated summary and ground truth
summary differ largely in terms of the unigram,
they have the same semantics. The second column
consists of an example of Python code on listing
keys. Both the generated summary and the ground
truth summary are identical. The figure shows that
our generated summaries achieve good quality by
producing the same semantics to the ground truth.

Table 3 shows the survey results from Amazon
MTurkers on the generated summaries given the



Info. Relevance Fluency Compre.
Java 3.71 3.81 3.67 4.12
Python 3.05 2.95 2.92 3.24

Table 3: Qualitative results from the MTurker studies.
Generally, MTurkers find that the generated summaries
for Java are informative, relevant, and fluent, and both
the Java and Python generated summaries can help in
understanding the code.

Java and Python code. The majority of the MTurk-
ers have (86.3%) Java experience and (72.2%)
Python experience between 1 to 5 years, in the Java
survey and Python survey, respectively. Only a mi-
nority of the MTurkers do not understand the code
and the generated summary: 19.4% for Java and
27.3% for Python. On average, MTurkers found
that the generated summaries for Java are informa-
tive, relevant, and fluent. For Python, MTurkers
found the generated summaries are less informa-
tive, less relevant, and less fluent than summaries
for Java. We believe that the main reason for the
lower performance of Python might be due to the
flexibility of the Python programming language
(as compared to the Java programming language),
which is dynamically typed, and it allows devel-
opers to write multiple different variants of code
for the same functionality. For example, in Python,
instead of having multiple lines of code in a loop,
the developer can combine them into a single line
for list comprehension. For both Java and Python,
MTurkers found the generated summaries can help
them understand the code better.

For the authors’ analysis, the majority of the
generated summaries produce the same meaning
as the ground truth: 35% (Java) and 16% (Python)
provide identical summaries to the ground truth,
and 29% (Java) and 38% (Python) hold differ-
ent structures but have the same semantics as the
ground truth. Those yielding different meanings
still achieve high quality generated summaries by
missing just a few points from the ground truth
(e.g., “delete and create a directory in ground truth”
becomes “create a directory” in generated sum-
maries) and by using slightly different adjective
phrases that do not damage the key points (e.g.,
“latex preamble” in ground truth becomes “current
preamble”).

6 Conclusions

In this work, we proposed a novel and effective
multi-task approach for generating summaries from

code. Two different but similar tasks, 1) generat-
ing summaries from code, and 2) generating sum-
maries from API sequence, are trained simultane-
ously. Our proposed model also considers model-
ing every line of code (LOC) whereas existing work
treats code as a single contiguous sequence. To the
best of our knowledge, this is the first work that uti-
lizes a natural language-based pre-trained language
model for a code summarization task. Our exper-
imental results on two popular datasets, Java and
Python, show that our proposed model performs
better than all baselines, achieving the new state-of-
the-art performances. Additionally, both the multi-
task component and LOC modeling component of
our proposed model are demonstrated to be effec-
tive. Furthermore, our proposed approach can be
combined with any pre-trained models, other than
BERT, potentially improving upon their original
performances.
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