
REMI: Defect Prediction for
Efficient API Testing

ESEC/FSE 2015, Industrial track

September 3, 2015

Mijung Kim*, Jaechang Nam*, Jaehyuk Yeon+, Soonhwang Choi+, and Sunghun Kim*

*Department of Computer Science and Engineering, HKUST
+Software R&D Center, Samsung Electronics CO., LTD

Motivation
• Cost-intensive software quality assurance

(QA) tasks at Samsung
– Creating test cases for APIs
– Testing APIs

• How to prioritize risky APIs for efficient
API testing?

2

Goal
• Apply software defect prediction for the

efficient API testing.

3

4

Predict

Training

?

?

Model

Project A

: Metric value

: Buggy-labeled instance
: Clean-labeled instance

? : Unlabeled instance

Software Defect Prediction

Related Work
Munson@TSE`92, Basili@TSE`95, Menzies@TSE`07,
Hassan@ICSE`09, Bird@FSE`11,D’ambros@EMSE112
Lee@FSE`11,...

Approach
REMI: Risk Evaluation Method for Interface testing

5

Collect
Metrics

Aggregate
Metrics

Label
Buggy/Clean

APIs

Build
Prediction

Model
Rank
APIs

API
Ranks

SW Repository

Bug
History

Experimental Setup
• Random Forest
• Subject
– Tizen-wearable

• Applied REMI for 36 functional packages with
about 1100 APIs

– Release Candidates (RC)
• RC2 to RC4

6

RCn-1 RCn

Build Predict With the prediction results,
perform more API test activities
for the defect-prone APIs.

Research Questions
• RQ1
– How accurately can REMI predict buggy APIs?

• RQ2
– How useful is REMI for API testing in the

actual API development process?

7

RESULT

8

Representative Prediction Results
(RC1 è RC2)

Packages
Depth 0 Depth All

Precision Recall F-measure Precision Recall F-measure

Package 1 1.000 0.968 0.984 1.000 0.935 0.967

Package 2 0.667 0154 0.250 0.600 0.462 0.522

Average 0.834 0.561 0.671 0.800 0.699 0.745

9

Results for Test Development Phase

10

Version REMI
Resources Bug Detection Ability

Man-Day API Test Cases Bugs
Detected

RC2
w/o REMI 7 (M) 70 70 2

w/ REMI 19.7 (N) 158 158 2

RC3
w/o REMI 4.7 (M) 47 47 0

w/ REMI 3.25 (N) 26 26 2

M: Modify test cases
N: Create new test cases ßAdditional test activity after REMI

Results for Test Execution Phase

11

Version REMI
Resources Bug Detection Ability

Man-Hour Test Run Defected
Bugs

Detection
Rate

RC2
w/o REMI 2.18 873 6.5 0.74%

w/ REMI 2.18 873 18 2.06%

RC3
w/o REMI 2.11 845 8.1 0.96%

w/ REMI 2.11 845 9 1.07%

Lessons Learned
• “The list of risky APIs provided before conducting

QA activities is helpful for testers to allocate their
testing effort efficiently, especially with tight time
constraints.”

• “In the process of applying REMI, overheads arise
during the tool configuration and executions
(approximately 1 to 1.5 hours).”

• “It is difficult to collect the bug information to label
buggy/clean APIs without noise.”

12

Conclusion
• REMI
– Efficiently manage limited resources for API

testing
– Could identify additional defects by

developing new test cases for risky APIs.

• Future work
– Apply other software projects including

open-source API development.

13

Q&A
THANK YOU!

14

