
Which Generated Test Failures Are Fault Revealing? Prioritizing
Failures Based on Inferred Precondition Violations using PAF∗

Mijung Kim
The Hong Kong University of Science

and Technology
Hong Kong, China
mjkimab@cse.ust.hk

Shing-Chi Cheung
The Hong Kong University of Science

and Technology
Hong Kong, China
scc@cse.ust.hk

Sunghun Kim
The Hong Kong University of Science

and Technology
Hong Kong, China
hunkim@cse.ust.hk

ABSTRACT

Automated unit testing tools, such as Randoop, have been developed
to produce failing tests as means of finding faults. However, these
tools often produce false alarms, so are not widely used in practice.
The main reason for a false alarm is that the generated failing test
violates an implicit precondition of the method under test, such as a
field should not be null at the entry of the method. This condition is
not explicitly programmed or documented but implicitly assumed
by developers. To address this limitation, we propose a technique
called Paf to cluster generated test failures due to the same cause
and reorder them based on their likelihood of violating an implicit
precondition of the method under test. From various test executions,
Paf observes their dataflows to the variables whose values are used
when the program fails. Based on the dataflow similarity and where
these values are originated, Paf clusters failures and determines
their likelihood of being fault revealing. We integrated Paf into
Randoop. Our empirical results on open-source projects show that
Paf effectively clusters fault revealing tests arising from the same
fault and successfully prioritizes the fault-revealing ones.

CCS CONCEPTS

• Software and its engineering → Software verification and

validation; Software testing and debugging;

KEYWORDS

Automated Test Generation, Test Failure Prioritization, Fault-revealing
Test Cases, Fault-inducing Data-flow Analysis
ACM Reference Format:

Mijung Kim, Shing-Chi Cheung, and Sunghun Kim. 2018. Which Gen-
erated Test Failures Are Fault Revealing? Prioritizing Failures Based on
Inferred Precondition Violations using PAF. In Proceedings of the 26th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE ’18), November 4–9,
2018, Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3236024.3236058

∗This work is supported by the Hong Kong RGC/GRF grant 16202917, MSRA collabo-
rative research grant, and Nvidia academic program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236058

(a) (b)
Figure 1: Call graphs to illustrate (a) local and (b) non-local

dataflows regarding the crash variable (cv).

1 INTRODUCTION

To reduce the manual effort on writing unit tests, researchers have
developed automated test generation tools based on various un-
derlying techniques such as random testing [6, 40], search-based
testing [14, 56], and dynamic symbolic execution [5, 20, 50].

These automated testing tools provide developers with a set of
failing tests that can possibly detect uncovered faults. However, the
failures from those tests are often false alarms that do not reveal
real faults [16, 18, 23, 39, 51]. This greatly hinders the usefulness of
unit test generation tools [2, 15, 16, 23].

The main reason for false alarm failures is that generated failing
tests violate the implicit preconditions that developers would be
aware of while coding [16, 18, 23, 39]. Rather than indicating the
existence of a real fault, a generated test for the method under test
(MUT) may fail just because it violates a method’s precondition
on the variables whose values are used when it fails. We call these
variables crash variables, denoted by cv. Judging the legitimacy of a
generated failing test is challenging as these preconditions made
implicitly by developers are rarely documented.

We propose an automated technique called Paf to rank a gen-
erated failing test’s legitimacy in the situation of undocumented
preconditions implicitly assumed by developers. It is inspired by
the following observation.

The red solid arrow in Figure 1(a) shows a failing test exercising
a dataflow that assigns a null value to the crash variable cv, causing
NullPointerExceptions. As the null value is originated after the
entry of MUT, this failure-inducing dataflow is considered local to
the MUT computation. It indicates that the dataflow is wholly in-
duced by the MUT’s implementation programmed by its developers.
As a result, the chances of its violating an MUT’s precondition is

679

https://doi.org/10.1145/3236024.3236058
https://doi.org/10.1145/3236024.3236058

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mijung Kim, Shing-Chi Cheung, and Sunghun Kim

small, and the failing test is likely fault revealing. In another failure-
inducing dataflow given by the red solid arrow in Figure 1(b), the
value assigned to cv that causes NullPointerExceptions is originated
before entering MUT. The dataflow is considered non-local to MUT
computation. It indicates that a portion of the dataflow is not in-
duced by the MUT’s implementation but by the generated test’s
logic. There is a chance that this dataflow portion causes violation
of some MUT’s preconditions that are implicitly assumed by its
implementation.

After the locality of failure-inducing dataflows is computed, our
idea is to cluster failures due to a common cause by dataflow simi-
larity and estimate their likelihood of violating preconditions by
further examining the dataflows of other related tests. The likeli-
hood increases when more dataflows concerning the crash variable
are found in other passing tests. Suppose the test exercising the
non-local failure-inducing dataflow above (Figure 1(b)) crashes due
to dereferencing the null value of cv at a statement s in Callee1.
However, there are two other passing tests (dotted green arrows)
with non-local dataflows resulting in the use of the same variable
cv at s . Since these dataflows are non-local, they have exercised
other def-use relations before entering MUT, causing cv to hold
a non-null value at statement s . As such, the existence of these
passing dataflows might suggest an implicit MUT precondition that
prevents cv from holding a null value at s . When more such passing
dataflows are found, the null pointer exception of the failing test is
more likely to occur because of an implicit precondition violation
rather than a real fault.

There are existing test generation techniques that mitigate the
implicit precondition issue while generating tests using simple
heuristics such as exception types and method modifiers [6], dy-
namic invariants [7, 38], and temporal properties among method
invocations [18]. However, the scope of what they consider implicit
preconditions is limited to only certain types of exceptions [6], or
pairs of method invocations [18]. Also, the performance of many of
these techniques [7, 18, 38] heavily relies on the quality of manually-
written tests. Therefore, generated failures by these tools may still
suffer from precondition violations and produce false alarms.

An effective alternative is to analyze generated failures and pri-
oritize their likeliness of precondition violations. Existing test pri-
oritization techniques aim to execute a test suite for regression
testing [10, 11, 25, 48] or mutation testing [34, 62, 63]. They do not
consider prioritization of failures found in generated tests.

In this paper, we present a technique called Paf (Prioritization
of Automatically-generated Failures) that clusters failing tests aris-
ing from the same cause by means of similar dataflows for crash
variables. It also classifies likely fault-revealing tests and prioritizes
failing tests based on their likelihood of violating the implicit pre-
conditions of the crash variables. Paf first analyzes the failing test
executions of MUT and determines if they may violate a precondi-
tion implicitly assumed by the developers on crash variables. For
the failing tests that are not subject to such violation, Paf classi-
fies them as likely fault-revealing and reports them at the top of
the list. Paf then sorts the tests in the classified list in a reverse
order to their likelihood of violation. The likelihood is estimated
by observing other dataflows reaching the same crash variable in
the generated passing tests.

We implement Paf and evaluate it on 10 versions of five popular
open-source projects. The results show that Paf effectively clusters
fault revealing failing tests that share a common cause. The results
also show that Paf accurately classifies fault revealing tests and
places fault-revealing tests at higher priority. Paf outperforms the
precondition-violation filtering component of existing test gener-
ation techniques (such as JCrasher and techniques using dynamic
invariants). Among the 5,770 generated failures by Randoop for
the subjects, Paf reported 24 fault revealing alarms. The failures
clustered by these alarms have a precision of 78.8%. Among these
alarms, four are new faults detected by Paf. They were confirmed
and fixed by the developers. Pafmakes the following contributions:

• A technique that analyzes the dataflows of crash variables,
and thereby identifies if a failure can be induced by the
synthesized logic of generated tests.

• A technique that groups failures (i.e., failing tests) based on
the similarity of their failure-inducing dataflows and pri-
oritizes them using the associated likelihood of violating
implicit preconditions of crash variables.

• A prototype implementation that integrates Paf into Ran-
doop, and an experiment of it on 10 versions of five popular
open source projects. The experiment results show that Paf
achieves high fault detection rate.

In the rest of this paper, we first illustrate our technique with
a motivating example. Next, we explain the methodology of our
technique and present the experiment. We then discuss the related
work, conclusion and future work.

2 MOTIVATING EXAMPLE

Let us consider a motivating example in Figure 2. It shows an auto-
matically generated test suite of two failing and two passing tests
for class ProjectEntry. The source code is real world code from
our subjects although they are slightly modified for the illustration
purpose. The test cases are generated by a state-of-the-art test gen-
eration tool, Randoop. The failing tests throw NullPointerExceptions
that are caused by dereferencing a null value of variables “e” and
“project” at the crash statements, 47 and 59, respectively. As such,
they are considered the crash variables of the failing tests.

To investigate whether a given MUT (e.g., indexOf for fTest1

and handleInput for fTest2) prescribes a precondition on the crash
variables, Paf findswhere the null value used by each crash variable
is originated. To do that, Paf locates the statement that creates the
null value to be received by the crash variable. This statement is
referred to the crash origin of the failure-inducing dataflow. Details
of identifying the crash origin will be explained in Section 3.1.

Based on the location of an crash origin, Paf determines whether
the concerned dataflow is local or non-local. Since the crash occurs
during an MUT’s computation, the locality of a dataflow follows the
crash point (i.e., crash statement) of its crash origin. Consider fTest1
in the motivating example. The null value received by variable e

causing NullPointerExceptions is originated from entries.get(key)

at Line 45 during the computation of indexOf. So, Line 45 is the crash
origin of the failure-inducing dataflow exercised by fTest1. Paf
considers the failure-inducing dataflow, which starts at Line 45 and
ends at Line 47, local to the MUT indexOf’s call graph. In the case
for fTest2, the null value received by variable project is originated

680

Which Generated Test Failures are Fault Revealing? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Four Generated Test Cases for ProjectEnry Class

Failing Tests

1 public void fTest1 () {

2 Project p = new Project ();

3 ProjectEntry pc = new ProjectEntry(p);

4 pc.put((Object)10.0d, (Object)100.0d);

5 int i = pc.indexOf ((Object)"hi!"); // MUT

6 }

7
8 public void fTest2 () {

9 ProjectEntry pc = new ProjectEntry ();

10 byte[] byte_array = new byte[] {};

11 pc.handleInput(byte_array , (-1)); //MUT

12 }

Passing Tests

13 public void pTest1 () {

14 ProjectComponent pc = new ProjectComponent ();

15 pc.setProject(new Project("hi"));

16 pc.handleInput(new byte[] {}, 1);

17 }

18
19 public void pTest2 () {

20 Project p = new Project ();

21 ProjectComponent pc = new ProjectComponent(p);

22 pc.handleInput(new byte[] {}, 5);

23 }

Source Code for ProjectEnry Class

31 private HashMap entries;

32 private Project project;

33
34 public ProjectEntry (){}

35 public ProjectEntry(Project project){

36 this.project = project;

37 entries = new HashMap (10);

38 }

39
40 public void put(Object key , Object value) {

41 Entry e = new Entry(key , value);

42 entries.put(key , e);

43 }

44 public int indexOf(Object key) {

45 Entry e = (Entry) entries.get(key);

46 int pos = 0;

47 while(e.prev != sentinel) { // NPE 1

48 pos++; e = e.prev; }

49 return pos;

50 }

51
52 public void setProject(Project project) {

53 this.project = project;

54 }

55 public Project getProject (){

56 return project;

57 }

58 public int handleInput(byte[] buffer , int offset) {

59 return getProject (). input(buffer , offset); // NPE 2

60 }

Figure 2: Example of source code and a set of automatically-generated tests.

from the default field initializer at Line 32 before handleInput is
invoked. So, the failure-inducing dataflow exercised by fTest2 is
considered non-local to the MUT handleInput’s call graph. Note
that the def-use relation of assigning the null value to project at
Line 32 and the use of the project’s value at the crash statement 59
arises from the logic synthesized by the generated failing test. There
are chances that the synthesized logic is inapplicable to the assumed
usages of handleInput, i.e., violating its implicit preconditions.

After determining the locality of a failure-inducing dataflow, Paf
observes whether there are other related dataflows to the concerned
crash variable exercised by passing tests. For fTest1, there are no
other def-use relation reaching the crash statement. For fTest2,
there is one def-use relation exercised by passing tests reaching the
crash statement, and it is defined at Line 56.

Paf then partitions the generated failing tests into two groups:
local and non-local. Local failing tests are ranked before non-local
failing tests because a local failure-inducing dataflow arises wholly
from the logic of the MUT and its callees. In most cases, the MUT
developers should be aware of the underlying implicit precondi-
tions. As such, local failure-inducing dataflows have less chances of
precondition violation as compared with non-local failure-inducing
dataflows. Paf then reorders the failing tests in each group based on
the proportion of the def-use relations reaching the crash statement
exercised in passing tests. This is, the more such passing tests exist,
the likelihood of a precondition violation increases.

Table 1 presents the summary of the collected data. In this exam-
ple, fTest1 is more likely to be fault-revealing than fTest2 because
the failure-inducing dataflow is local. Although the partitioning
based on the locality is sufficient to reorder the failing tests in this
example, if we further investigate the likelihood, it would be 0/1 = 0
for fTest1 and 1/1 = 1 for fTest2. Thus, the failing tests are ordered
fTest1 → fTest2. In the real world, fTest1 reveals a real fault that

Table 1: Motivating example for the failing tests in Figure 2.

Locality of Def-use Passing
failure- reaching tests

Crash inducing crash exercising
Test Origin dataflows statement def-use

fTest1 Line 45 local (45, 47) None

fTest2 Line 32 non-local (56, 59) pTest1
pTest2

was reported in the bug repository and fixed2. On the other hand,
fTest2 has been confirmed as a false alarm by the developer3.

3 OUR APPROACH

In this section, we present the details of Paf. Figure 3(a) shows the
four processing phases of Paf. It takes a target program, a set of
generated failing tests and a set of generated passing tests as inputs,
and outputs a list of reordered failing tests.

In Phase 1, Paf first identifies the crash variable for each fail-
ing test. It then finds the crash origin, a statement where the
value assigned to the crash variable is originated in the failing test.
This statement becomes the starting point of the failure-inducing
dataflow. In Phase 2, Paf groups the failing tests into different sets,
called test flow-sets, based on the similarity of their failure-inducing
dataflows, and then further partitions these sets (i.e., test flow-sets)
into two categories (local or non-local) based on the location of
their crash origins. In Phase 3, Paf determines the likelihood of po-
tential precondition violations by examining the related dataflows
exercised by other passing tests. Finally, in Phase 4, Paf reorders
the classified groups of test flow-sets based on their locality and

2https://issues.apache.org/jira/browse/COLLECTIONS-28
3https://bz.apache.org/bugzilla/show_bug.cgi?id=49400

681

https://issues.apache.org/jira/browse/COLLECTIONS-28
https://bz.apache.org/bugzilla/show_bug.cgi?id=49400

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mijung Kim, Shing-Chi Cheung, and Sunghun Kim

(a) Overview (b) Output diagram

Figure 3: Overview of our approach (a) and an output example of the reordered list returned by Paf (b).

likelihood obtained in Phases 2 and 3. Figure 3(b) shows an example
of a reordered list returned by Paf.

3.1 Phase 1: Find Crash Variable and Its Origin

In Phase 1, Paf investigates how an incorrect value propagates to a
crash variable in each failing test.

Identify Crash Variable Paf identifies the crash variable cv
that is used at the crash statement for each failing test. The infor-
mation about the crash statement (e.g., file name, method name,
and line number) is provided by the top frame of a stack trace.
However, identifying cv from the top stack frame is not always
straightforward because a statement can involve multiple variables.

To cope with this challenge, Paf uses dynamic analysis by instru-
menting the program and monitoring all variables used at the top
stack frame. Paf considers different types of exceptions to choose
candidate variables to monitor because a crash variable plays differ-
ent roles in different exceptions. Suppose that the statement of the
top frame is var = array[i+j].foo(). When a test throws an Array-
OutOfBoundException, candidates to monitor are those variables
used as an array index, which in this case is i+j only. Paf analysis
is done on the intermediate representation of the program (e.g.,
Jimple for Soot [58]). Therefore, when more than one variable is
involved in an array index like i+j, array[i+j] would be represented
like r = i+j; array[r]. Thus, in our analysis, the crash variable
candidate would be r. When a test throws a NullPointerException,
however, the candidates are array and array[i+j]. Paf then runs
the failing tests on the instrumented program to identify the exact
crash variable, which is the one accessed right before the failure.

Note that Paf also supports multiple crash variables in a failing
test. For example, if an IllegalArgumentException occurs under a
branch condition involving multiple arguments, Paf identifies all
the argument variables used in the branch condition as the crash
variables. Paf performs the analysis for the rest of Phase 1 and
Phase 2 for each crash variable individually.

Derive Crash Origin and Failure-Inducing Dataflow Paf
derives a crash origin of the crash variable’s value (v) used at the
crash statement in the failing test under consideration. The crash
origin is a statement where the value v is assigned in the failing
execution. This value is subsequently received by the crash variable,
resulting in a program failure at the crash statement.

Given a failing execution and a crash variable, Paf identifies the
crash origin by transitively tracing backward from the the crash

statement the interprocedural def-use associations (DUA)4 [26]
given the execution trace of a failing test.

Paf performs the backward tracing only along copy statements [1]
that either copy a variable’s value to another variable (e.g., a=b) or
assign a method’s return value to a variable (e.g., a=getB()). This
is because the value assigned at the crash origin should reach the
crash variable without being modified. As such, the backward trac-
ing stops when it hits a non-copy statement. For example, consider
a non-copy statement s in an intermediate representation, r = a+b;

where r is assigned with 0 and causes a DivideByZeroException. In
this case, Paf stops the backward tracing at s and returns it as the
crash origin rather than continuing tracing further for a and b.

The set of def-use associations collected during the backward
tracing form a chain that describes a failure-inducing dataflow start-
ing with the value v’s creation at the crash origin and ending with
the use of v through the crash variable at the crash statement. The
dataflow traverses a def-clear path of the crash variable from its
assignment of value v to the use of its value at the crash statement.

Revisit fTest2 in Figure 2 for illustration. The backward tracing
is done starting from the crash statement 59 until it hits Line 32
where project is initialized with a default value, null. The failure-
inducing dataflow is formed with a chain of interprocedural DUAs
{(32, 56, project), (56, 59, returnVar)} where returnVar refers to a
return variable that copies the return value of getProject(). Paf
returns 32 as the crash origin, which is the definition statement of
the first DUA in the failure-inducing dataflow.

3.2 Phase 2: Group and Partition Failing Tests

In Phase 2, Paf groups failing tests in two steps. In the first step,
failing tests sharing the same crash origin, crash variable and crash
statement are clustered into the same set, which we call a test flow-
set. The clustering is motivated by an observation that generated
failing tests exercising close failure-inducing dataflows are mostly
redundant to each other sharing the same failure cause. It helps
alleviate developers’ debugging effort from the need to inspect all
failing tests in the same flow-set.

In the second step, Paf partitions the failure-inducing dataflow
of a flow-set into two categories based on its crash origin’s location
(local or non-local). Note that all tests in the same test flow-set share
the same failure-inducing dataflow. Paf considers a dataflow local
if its crash origin is executed after the entry of MUT; otherwise
non-local. Paf makes a special treatment of field initializers since
they do not belong to any methods. As field initializers are executed

4A def-use association represents a data-flow relationship in a triple (d , u ,v) such that
a variable v which has been defined in Statement d reaches and is used in Statement
u without being redefined along a control flow path that connects d to u .

682

Which Generated Test Failures are Fault Revealing? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

spontaneously when a constructor is called, Paf bundles them with
the constructor and considers their execution after the entry of the
constructor. Note that the dataflow similarity and origin locality
are orthogonal features. Therefore, the order of clustering and
partitioning does not matter.

3.3 Phase 3: Calculate Violation Likelihood

After partitioning test flow-sets into local and non-local groups,
Paf measures the likelihood of a potential precondition violation
within each group. Intuitively, the likelihood of a failing test to
violate preconditions increases when its crash statement can be
reached by more passing tests. That is, a failing test is more likely
a false alarm when its crash statement is reached 10 times by 10
different passing dataflows than when it is reached 100 times by
the same passing dataflow. Therefore, counting just the number of
passing tests reaching the crash statement alone might cause a bias
towards or against specific dataflows.

To address this challenge, Paf calculates the likelihood according
to the DUA coverage by passing tests reaching the crash statement.
Passing tests that cover different DUAs are considered distinct.
Specifically, it works as follows. For each failing test flow-set, Paf
extracts a set of DUAs with respect to the crash variable cv at the
crash statement u. Each extracted DUA (d , u, cv) satisfies three
criteria: (1) d refers to a statement where cv is defined, (2) u refers
to the crash statement, and (3) there exists a def-clear path from d
to u in the program’s control flow graph.

We denote the set of extracted DUAs as θ . Using the extracted
DUAs for each failing test flow-set, Paf measures its likelihood
based on the number of DUAs in θ covered by at least one passing
test as follows:

Likelihood =
DUAs in θ covered by passing tests

DUAs in θ
(1)

Paf orders failing test flow-sets according to the likelihoods
within their locality group. Suppose fTest1 and fTest2 in Figure 2
are two failing tests belonging to two different test flow-sets FS1
and FS2, respectively. FS1 assumes the θ for fTest1, which is {(45,
47, e)}. Since there is no passing test that covers this DUA, FS1’s
likelihood is 0. Note that all failing tests in the same test flow-set
assume the same likelihood because the set of extracted DUAs
(i.e., θ) would be identical for all tests in the same test flow-set.
FS2 assumes the θ for fTest2, which is {(56, 59, returnVar)}. This
DUA is covered by two other passing tests pTest1 and pTest2. The
likelihood of FS2 is, therefore, 1/1 = 1.

3.4 Phase 4: Reorder Failing Tests

In Phase 4, Paf reorders the set of failing test flow-sets in each group
(i.e., local and non-local) according to the computed likelihood. A
failing flow-set with a lower likelihood is ranked before that with a
higher one. Test flow-sets ended up with a tie in likelihood values
are reordered among themselves in a random order.

After the reordering is done, the final output of a reordered list
would look like Figure 3(b).

Recall that Paf can handle multiple crash variables involved in
a single failing test (as discussed in Phase 1). Paf performs the
analysis for each crash variable individually. That is, Paf computes
the likelihoods for each flow-sets corresponding to the multiple

Table 2: Generated failures and their types from Randoop

Total Assertion
Subject Fails NPE Errors Other
Ant 1274 93.1% 4.4% 2.5%
Collections 329 72.2% 24.5% 3.3%
Ivy 463 60.8% 9.7% 29.5%
Math 45 91.2% 8.8% 0%
Rhino 531 77.4% 18.8% 3.8%
Average 528.4 79.0% 13.2% 7.8%

crash variables, and uses the largest likelihood for reordering the
test flow-set. The largest likelihood is used because a failing test
would be a false alarm if any of its failure-inducing dataflows to
one of the crash variables violates implicit preconditions.

4 EXPERIMENT SETUP

To assess our approach, we implemented Paf and evaluated it on
10 versions of five real-world Java programs.

Our evaluation investigates three research questions:

RQ1: How accurately does our approach cluster fault re-

vealing tests with the same failure cause?

This study aims to evaluate whether test flow-sets sharing
the same crash origin, crash statement, and crash variable
can accurately cluster fault revealing tests with the same
failure cause.

RQ2: How likely is a failing test fault-revealing if it ex-

ercises a local failure-inducing dataflow?

This study aims to evaluate the usefulness of partitioning
failing tests based on the locality of the dataflows.

RQ3: Can our approach improve the rate of the fault de-

tection of generated failing tests?

This study aims to demonstrate the effectiveness of our pri-
oritization technique by considering whether our approach
can detect faults faster than other approaches.

4.1 Implementation

We integrated Paf into Randoop(v3.1.0) [40] so that Paf outputs the
ordered list of test flow-sets.. We selected Randoop because of its
popularity and adoption by the industry [39] and academia for
automated test generation.

We implemented the Paf tool on top of the Soot framework [58].
Paf analyzes and instruments the bytecode of a program by utilizing
the Jimple intermediate representation of Soot. To compute def-
use associations (DUAs) and monitor def-use coverage, we used
a fine-grained data-dependence analysis tool, DUA-Forensics [49]
that provides standard interprocedural data-flow algorithms for
object-oriented languages [26, 27, 41] on top of Soot.

Our implementation supports four types of runtime exceptions
that are the most common types generated from Randoop. Those
types include (1) NullPointerExceptions (NPEs), (2) IllegalArgu-
mentExceptions (3) IllegalStateExceptions, and (4) ArrayOutOf-
BoundExceptions. Paf treats an application specific exception thrown
under a branch condition as an IllegalStatementException. As shown

683

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mijung Kim, Shing-Chi Cheung, and Sunghun Kim

Table 3: Subjects used in the empirical studies.

Class Class w/
under Failing

Subject Label LOC Test Tests

Ant 1.6.5 Ant1 86K 572 12
1.8.1 Ant2 102K 873 16

Collections 2.0 Coll1 7K 52 6
2.1 Coll2 11K 204 8

Ivy 2.2.0 Ivy1 50K 489 10
2.4.0 Ivy2 51K 495 18

Math 2.2 Math1 49K 784 10

Rhino
1.7.R2 Rhn1 43K 153 7
1.7.R3 Rhn2 55K 392 25
1.7.R5 Rhn3 57K 411 25

in Table 25, Paf can support over 80% of failures from Randoop with
these four error types.

Note that Paf does not handle assertion failures triggered from
test cases. Since assertions written in tests check violations of post-
conditions (rather than preconditions) after MUT calls are already
returned, it is difficult to automatically infer precondition violations
in such situations.

4.2 Subjects and Experiment Design

Table 3 shows the five open-source Java projects that we used for
our experiment subjects. To select our subjects, we identified open
source projects used for evaluation in earlier related work using
Randoop [40], such as Palus [64], OCAT [32], and Palulu [3]. We
theexcluded those projects that (1) were not actively maintained
for at least past 18 months in Github, (2) Randoop did not produce
any failing tests for, or (3) Paf found no local test flow-sets.

To conduct our experiments for each subject, we ran Paf on the
deployed jar that bundles the entire set of classes (counted in the
fifth column of Table 3), and acquired the sets of failing tests for
the classes counted in the last column of Table 3. To avoid possible
biases caused, we used the default command line settings for Ran-
doop. Particularly, we used default settings for null inputs (i.e., no
direct null passing as an argument). That is, NullPointerExceptions
caused with null arguments are filtered out. Thus, Column 3 in
Table 2 lists NPEs occurred only with non-null argument inputs.

We validated whether a generated failing test is fault revealing
using the following criteria. A failing test of a program P is con-
sidered fault revealing if the test passes in a subsequent version of
P , indicating that the relevant fault in P has been fixed. For those
failing tests exercising local failure-inducing dataflows, when we
could not find the relevant patch making the test pass, we reported
it in the subject’s bug repository. As a result, four bug reports filed
by us have been confirmed and fixed (two for Ant, one for Math, and
one for Ivy).

If a failing test still fails in the latest code, we consider the test
non-fault-revealing. The rationale behind this criterion is based
on an earlier study by Ray et al. [46]. It reports that “if a bug is
introduced to code, the bug will be fixed within few months”. All
the subjects that we have selected have been actively maintained
5Assertion errors shown in Table 2 include ones triggered from the tests.

Table 4: Our test dataset. FR denotes fault revealing.

Randoop Paf
Distinct Failing FR Test FR Test Passing

Subject Faults Tests Tests Flow-sets Flow-sets Tests
Ant1 6 1086 548 74 6 25,587
Ant2 6 1462 77 124 7 36,106
Coll1 1 402 38 34 1 12,972
Coll2 1 256 17 33 1 10,761
Ivy1 1 360 1 65 1 7,047
Ivy2* 0 565 0 64 0 13,232
Math1 2 45 8 22 3 6,204
Rhn1 1 258 41 46 1 13,626
Rhn2 1 676 37 152 1 15,691
Rhn3 1 660 44 121 1 15,132
Total 20 5770 811 735 22 156,358

and released for at least 18 months. As such, we consider faults of
an actively maintained program are mostly fixed within 18 months.
This implies that if there has been no changes to make the test pass
for last 18 months, the test is likely to be non-fault-revealing. To
supplement this criterion on non-fault-revealing tests, we ensure
the test fails in the latest version with no changes made to the
MUT’s execution. For those tests that failed in the latest version
with some changes, we manually inspected and checked whether
changes have been made to the evaluation of crash variables. If
not, it is considered non-fault-revealing. If so, we filed an issue
report seeking developers’ confirmation. We found two such cases
and reported. The developer confirmed all of them as non-fault-
revealing, which conforms to our criterion.

5 EXPERIMENTAL RESULTS

In this section, we present and discuss our experimental results
on the research questions. The tool and dataset are available at
https://github.com/PAMSE/PAFAnalysis.

Table 4 presents the information of the generated failing tests
returned by Randoop and Paf. Column 2 shows the distinct number
of faults that can be revealed by Randoop tests. We consider each
patch identifies a distinct fault. Column 3 lists the number of failing
tests generated by Randoop. Among these tests, Column 4 shows
the number of confirmed fault revealing tests based on the criteria
described in Section 4.2. Column 5 lists among Randoop’s tests in
Column 2, the number of test flow-sets sharing the same crash
origin, crash statement, and crash variable. Column 6 represents
the number of fault revealing test flow-sets. Although tests in the
same test flow-sets may not execute the same path, all tests in a
same set are either all fault revealing or all not fault revealing. Our
validation of the fault revealing flow-sets found that the patches
committed in a subsequent version to fix the faults made all tests in
the same test flow-sets pass. This further indicates that all tests in a
same fault revealing flow-set reveal the same fault. Finally, the last
column lists the number of passing tests generated by Randoop. We
used these passing tests to determine the likelihood of precondition
violations.

Note that Ivy2 does not have any confirmed fault revealing tests.
For this reason, Ivy2 is not involved in the study of RQ1 and RQ3.

684

https://github.com/PAMSE/PAFAnalysis

Which Generated Test Failures are Fault Revealing? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 5: Results for RQ1. Clustering accuracy

F-Measure # of Clusters
Subject PAF ReB MSe PAF ReB MSe Opt
Ant1 1 0.708 0.708 5 14 7 5
Ant2 0.987 0.979 0.711 7 7 4 6
Coll1 1 0.593 0.733 1 23 2 1
Coll2 1 0.64 0.786 1 10 2 1
Ivy1 1 1 1 1 1 1 1
Ivy2* - - - - - - -
Math1 0.925 1 0.583 3 2 3 2
Rhino1 1 0.048 0.988 1 41 2 1
Rhino2 1 0.053 0.857 1 37 3 1
Rhino3 1 0.044 0.842 1 44 2 1

Additionally, for Ant1, the reason why the number of fault revealing
tests is significantly larger than other subjects is that 512 out of 548
tests are in the same test flow-set. Because the crash statement is
located in a superclass of many subclasses, it is often executed and
failed whenever the subclasses are tested.

5.1 RQ1: Clustering Performance

The goal of this study is to evaluate how accurately test flow-sets
derived by Paf can cluster fault revealing tests (not all failing tests)
with the same failure cause. We obtained the ground truth by con-
sidering multiple failing tests induced by the same fault if they
failed before a patch was applied and passed after the patch was
applied. Ideally, the number of failing test clusters is the same as
the number of distinct faults, which is given in Column 2 of Table 4.

As an evaluation metric, we used the F-measure [53], which is
widely used for evaluating clustering techniques [8, 42, 53]. To cal-
culate the F-measure, we denoteC as the set of all clusters grouped
by Paf (i.e., fault revealing test flow-sets) andO as the set of ground
truth clusters for the optimal clusters. More specifically, we denote
Ci as the ith cluster,O j as the jth cluster, and N as the total number
of fault revealing tests in Column 4 of Table 4. We calculate the
precision and recall as follows:

Precision(Ci ,O j) =
|Ci ∩O j |

|Ci |
,Recall(Ci ,O j) =

|Ci ∩O j |
|O j |

F-measure computes the weighted average of maximal F-measure
for each clusters as follows:

F(Ci ,O j) =
2 ∗ Recall(Ci ,O j) ∗ Precision(Ci ,O j)
Recall(Ci ,O j) + Precision(Ci ,O j)

F-measure(C) =
∑
i

|Ci |
N

∗max j {F(Ci ,O j)}

We compared our results with two baselines, ReBucket [8] and
MSeer [19]. The two baselines are state-of-the-art representatives
of clustering approaches for program traces. ReBucket groups fail-
ing stack traces based on their similarity. MSeer leverages rank-
promixity to group failing tests based on the suspiciousness rank-
ings of statements by analyzing execution traces of failing and
passing tests. To obtain the suspiciousness rankings, we used a state-
of-the-art spectrum-based fault localization tool, called GZoltar [47].

The data in Table 5 show that Paf outperforms the two baselines
ReBucket (ReB) and MSeer (MSe) in most cases. The last column (Opt)

refers to the ideal case of optimal clustering where all failing tests
due to the same fault are clustered in the same set. Paf achieves
100% F-measure for most subjects and at least 92% for all subjects.
The reason of preventing Paf from attaining 100% F-measure for
Ant2 and Math1 is that a crash origin flows to two different crash
statements, and the fix was made at the crash origin.

For ReBucket, if the call stack is not deep and identical to that of
other tests, it can also achieve high accuracy like Ant2 and Math1.
However, it poorly performs for some subjects (Rhino). This is be-
cause ReBucket trains hyper parameters by itself rather than requir-
ing the users to tune them. For Rhino, the parameters are poorly
trained and ReBucekt yields very low F-Measure.

For MSeer, since failing tests arising from the same fault may
traverse different execution paths, the suspiciousness scores of
the same statement may vary across the tests, causing them to be
partitioned into different clusters.

For Ivy1, the F-measure is 100% for all approaches because there
is only one fault revealing test as shown in Table 4. For Ivy2, the
results are inapplicable because there is no fault revealing tests as
discussed earlier.

The results suggest that test flow-sets grouped by the same
crash origins, crash variables and crash statements can effectively
cluster failing tests subject to the same fault (or cause). Therefore,
Paf enables developers to examine significantly less failing tests
because one test in a test flow-set can represent the whole group.

5.2 RQ2: Accuracy of Locality Based

Partitioning

In Paf phase 2, it partitions the failure-inducing dataflows induced
by failing tests into local and non-local. The goal of this study is to
evaluate the accuracy of using this partitioning result to identify if a
failing test is fault revealing. To do this, we measured the precision
and recall of the partitioning. Since our test flow-sets share the
same failure-inducing dataflows, we measure the accuracy in terms
of test flow-sets rather than individual failing tests.

We also compared the results with two baselines, other false
alarm exception-filtering approaches using JCrasher’s heuristics [6]
and Daikon’s dynamic invariants [12]. JCrasher’s heuristics take
into account exception types and access modifiers (e.g., public or
non-public) of exception-throwing methods to classify whether
a given failing test is likely to violate preconditions. For another
comparison, we used Daikon’s dynamic invariants [12] mined from
generated passing tests from Randoop as counted in Table 4. We
extracted relevant invariants with respect to the crash variable
at the entry of MUT. If such invariants exist, we classified the
corresponding failing tests to the crash variable as false alarms,
otherwise as fault-revealing. Existing test generation tools such
as DSD-Crasher [7], which is an extended version of JCrasher, and
EClat [38] also leverage Daikon’s invariants to filter illegal inputs
that violate invariants at the MUT’s entry.

Table 6 presents the comparison results. Since JCrasher andDaikon
classify individual tests without grouping, the precision and recall
of Paf are measured for both test flow-sets and individual tests. “FR
Flow Set” and “FR Test” stand for the number of fault revealing flow-
sets and the number of fault revealing failing tests for each subject
in our ground truth. “Alarm” and “True” stand for the number of

685

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mijung Kim, Shing-Chi Cheung, and Sunghun Kim

Table 6: Precision (Pre.) and Recall (Rec.) results for RQ2.

Subject

Test Flow-Sets Individual Tests
FR PAF PAF JCrasher Daikon
Flow True / FR True / True / True /
Set Alarm Pre. Rec. Test Alarm Pre. Rec. Alarm Pre. Rec. Alarm Pre. Rec.

Ant1 6 2/2 100 33.3 548 20/20 100 3.6 334/392 85.2 60.9 21/174 12.1 3.8
Ant2 7 1/1 100 14.3 77 10/10 100 13.0 13/50 26 16.9 75/330 22.7 97.4
Coll1 1 1/1 100 100 38 38/38 100 100 16/87 18.4 42.1 38/90 42.2 100
Coll2 1 1/1 100 100 17 17/17 100 100 8/77 10.4 47.1 17/34 50 100
Ivy1 1 1/8 12.5 100 1 1/36 2.8 100 0/169 0 0 1/238 0.4 100
Ivy2 0 0/2 0 - 0 0/15 0 - 0/265 0 - 0/147 0 -
Math1 3 3/3 100 100 8 8/8 100 100 5/25 20 62.5 8/45 17.8 100
Rhino1 1 1/2 50 100 41 41/44 93.2 100 0/48 0 0 41/166 24.7 100
Rhino2 1 1/2 50 100 37 37/40 92.5 100 0/138 0 0 37/424 8.7 100
Rhino3 1 1/2 50 100 44 44/46 95.7 100 0/259 0 0 44/495 8.9 100
Total 22 12/24 50 54.5 811 216/274 78.8 26.6 376/1510 24.9 46.4 282/2143 13.2 34.8

alarms selected as fault revealing by each individual tool, and the
number of true alarms among these alarms, respectively.

The table shows the number of test alarms made by Paf is less
than that of other approaches in most cases. Paf achieves signifi-
cantly higher precision than JCrasher and Daikon for all subjects. Paf
also achieves higher or equal recall for all subjects except Ant1 and
Ant2. Moreover, for all subjects, Paf achieves at least 100% precision
or 100% recall.

For those subjects that could not achieve 100% precision (Ivy1
and three Rhinos), the reason for imprecision is from one common
pattern shown in the following code snippet.
public void MUT() {

m1(0).foo(); } // NPE because m1(0) is null
public Object m1(int i){

return i>0 ? field : null; } // null is returned

The crash origin is local to the MUT’s call graph because m1 explic-
itly returns null. Therefore, this NPE occurred due to an incorrect
behavior of MUT, rather than the incorrect test input. We reported
this issue, but our reports are pending. However, we believe this
issue is a bug because we found this fault pattern was properly
handled to avoid an exception in other subjects (Ant and Coll). Nev-
ertheless, since there has been no changes, the relevant failing tests
cannot be confirmed as fault revealing based on our criterion.

Paf achieved low recall because of two reasons for Ant1 andAnt2.
First, four test flow-sets of both Ant1 and Ant2 reveal faults on fields
involving concurrency and logging. Preconditions on these fields
should be better handled in the code to reliably support method
calls at any time. We confirmed that the fixes had been applied
in a subsequent version. Second, five test flow-sets of Ant2 fails
when MUT is equals method that overrides a Java library method.
Although the null input option is disabled as default, equals directly
passes null in the tests because Randoop uses it for its contract
checks (e.g, o.equals(null) == false). This is an exceptional case
whereMUT overrides such Java librarymethods that strictly require
explicit preconditions in the code.

For Ivy2, since no fault revealing tests were found, the precision
is 0 and the recall is not applicable. However, the number of selected
alarms from Paf is significantly lower than other tools even for
individual tests.

The recall of Paf (individual tests) for Ant1 produces outliers that
make the average recall dramatically drop. This is because one test-
flow set containing 512 tests (mentioned in Table 4’s description) is
not selected.

Although Paf outperforms other tools in all aspects, the recall
of Paf (individual tests) for Ant2 yields average recall lower than
Daikon. However, Paf generates significantly less number of highly
precise test alarms for all subjects (for Ant2, 1 vs 330). Additionally,
our likelihood measurement successfully addresses this weakness
by placing fault revealing tests in higher ranks.

Overall, the results suggest the locality of failure-inducing data-
flows offers a nice criterion to select fault revealing failing tests in
two aspects. First, four of the local failure-inducing dataflows (local
flows) were newly detected by Paf. All of them were confirmed and
fixed by the developers. Although three more bug reports associated
with other local flows are still pending, none of our reports have
been rejected. Second, Randoop generated 5770 failures (failing tests)
for 10 versions of 5 popular open source subjects. Paf identified 274
of them able to exhibit local flows. It clustered these 274 failures
into 24 test flow-set alarms based on their common causes so that
users need only to inspect one failure per flow-set. 12 test flow-sets
were found to be truly fault revealing. These flow-sets revealed
216 fault revealing failures. As a result, Paf enables developers to
inspect only 24 alarms to confirm 216 fault revealing failures out of
its identified 274 failures, yielding a precision of 78.8%.

5.3 RQ3: Prioritization Performance

The goal of this study is to evaluate how fast Paf detects the faults
using a Paf’s ranked list. To do this, we measure the fault detection
rate of prioritized test suites in this study. We use a widely-used
metric called APFD (Average Percentage Faults Detected) [10, 11,
48]. APFD measures the weighted average of the percentage of
detected faults over the life of a test suite. An APFD value ranges
from 0 to 1, the higher value means the better (i.e., faster) fault
detection rate. APFD can be measured in an equation as follows:

APFD = 1 − TF1 +TF2 + ... +TFm
nm

+
1
2n

(2)

686

Which Generated Test Failures are Fault Revealing? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

(a) (b)
Figure 4: Example of the APFD (Average Percentage Faults

Detected) measure.

n andm indicate the numbers of failing tests and faults, respectively.
TFi means the rank of the first test case that reveals fault i in the
reordered test set.

Figure 4 gives an illustrative example borrowed from the prior
literature on test prioritization [10, 11, 48]. Figure 4(a) shows the
information of a test suite of five tests (A through E), which is able
to detect 10 faults. Suppose the test suite is prioritized in order of
A-B-C-D-E. Figure 4(b) presents the percentage of detected faults
when the fraction of test suite is reached. The area under the curve
represents the weighted average of the percentage of detected faults
over the life of a test suite. Thus, APFD is 50% in this example.

We compare this APFD score with that of existing techniques,
JCrasher and Daikon. Since they do not further rank tests after parti-
tioning as described in RQ2, we placed the group of tests classified
with “no potential violation”(“Alarm” in Table 6) at the top, the
group of tests classified with “potential violation” at the bottom.
We then ranked the tests in each group randomly. As discussed in
RQ2, since JCrasher and Daikon do not handle clustering, we mea-
sured APFD scores of Paf with and without clustering (i.e., test
flow-sets and individual tests).

Figure 5 presents the results. The data in the graph show that
on average (the leftmost in the graph), the fault detection rate
of our prioritization approach outperforms JCrasher and Daikon.
Paf (individual tests) outperforms other techniques in most cases.
This demonstrates the usefulness of ranking failing tests using
the violation likelihood. Although Paf (test flow-sets) performs
slightly worse that Paf (individual tests), the use of test flow-sets
reduces the number of test cases to examine significantly by 91.2%
(=1-(24/274)) (Table 4). The results for individual tests are better
because APFD scores are calculated with regards to the rank of the
first test that reveals the same fault. Since there are multiple tests
(sometimes tens or even hundreds) in the same test flow-set, the
APFD value can be pushed up by the top ranked fault revealing test.
On the other hand, Paf measures the likelihood of a test flow-set
based on the test with the highest likelihood, i.e., the lowest ranked
fault-revealing test in the set.

Paf consistently achieves at least 90% APFD score for all subjects
except Ant1 and Ant2 while JCrasher greatly fluctuates across dif-
ferent subjects. The main reason is that the precondition violation
filtering of JCrasher’s heuristics depends solely on exception types
and method modifiers. These two types of information may not be
effective in inferring a violation of a precondition.

Daikon performs better than JCrasher in most cases although it
performs poorly for some subjects (Ivy andMath). Most importantly,

0	

0.2	

0.4	

0.6	

0.8	

1	

Average	 Ant1	 Ant2	 Coll1	 Coll2	 Ivy1	 Math1	 Rhino1	 Rhino2	 Rhino3	

Jcrasher	(individual	test)	 Daikon	(individual	test)	
PAF	(individual	test)	 PAF	(test	flow-sets)	

Figure 5: Results for RQ3 showing APFD scores.

however, Paf (individual test) outperforms Daikon in all subjects
except Ant2. This implies that considering only invariant violations
is insufficient for effective prioritization because the quality of dy-
namic invariants mined varies by profiles and coverage of passing
executions. Paf’s performance may also be affected by this issue.
However, unlike Daikon, Paf bases its analysis on failure-inducing
dataflows. The analysis can better identify the likelihood of precon-
dition violations and reduce the ambiguities that may arise from
the inadequate invariants mined.

In summary, this study shows that the use of generated passing
tests is useful for ranking. The proportion of exercised DUAs by
passing tests (rather than the raw number of passing tests) can
affect the ranking. This percentage represents the chances that
the crash variable is reached in various passing dataflows. This
information helps improve the ranking effectiveness when recall is
not 100%.
5.4 Threats to Validity

We consider several threats to validity of our experiments.
A potential threat in our experimentation is that the set of fault

revealing tests used for the experiments may not be 100% accurate.
In general, there is no ground truth that a failing test is not fault
revealing. To address this, we adopted well-defined and objective
criteria to label fault revealing tests as discussed in Section 4.2.

Threats also arise when the results from the experiment are
not generalizable to other environments, such as in other testing
tools. To mitigate these threats, we evaluated our experiment using
tests generated from Randoop, which is a popular automatic test
generation tools used both in academia and industry. In future,
we plan to investigate Paf’s results on other test generation tools.
Since Paf analysis considers Java runtime exceptions described in
Section 4.1, Paf can be integrated into other test generation tools
in the same way as Randoop.

To alleviate the generalizability threat, we selected five popular
open-source projects with different sizes and application types
(e.g., commandline tools and libraries) for experiments. However,
our results may not be generalizable to commercial projects, GUI
projects, and projects written in other languages.

6 RELATEDWORK

Our contributions relate to the work that clusters failing tests with
the same failure cause, improves the input quality of generated
tests, and assesses the fault-detection ability of test suites.

687

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mijung Kim, Shing-Chi Cheung, and Sunghun Kim

For the area of clustering failing tests, existing techniques mainly
leverage similarities among stack traces [4, 8, 36] or execution
traces [9, 19, 33, 35, 42, 44]. For the execution trace based ap-
proach, there are two types, rank-proximity and trace-proximity.
The rank-proximity uses distances between pairwise rankings re-
turned from spectrum-based fault localization [19, 33, 35, 42]. The
trace-proximity clusters tests based on the coverage or profile simi-
larity of their execution traces [9, 33, 44]. It was reported that rank-
proximity is more advanced and outperforms trace-proximity [35].
Our technique not only clusters failing executions with the same
causes, but also prioritizes them based on the likelihood of precon-
dition violations.

To improve the input quality of generated tests, some existing
techniques address the implicit precondition issue. As discussed
in Introduction, JCrasher [6] leverages exception types and access
modifiers, DSD-Crasher [7] and Eclat [38] use dynamic invariants
of Daikon [12] mined from sample executions. In addition, Fraser et
al. [18] uses temporal properties among method invocations. Other
work addresses the false alarm issue using specification mining of
API protocols [45] and search-based approach at the GUI level [23].
Our approach is orthogonal to these techniques because they focus
on generating fault-revealing tests while ours prioritizes generated
tests for early fault detection.

Jain et al. [31] proposed a technique that determines the feasibil-
ity of argument inputs generated by dynamic symbolic executions
using Daikon’s invariants, and ranks the generated inputs based
on the confidence values of invariants. However, this approach
targets argument inputs generated for a single method rather than
a sequence of methods that our approach targets.

Various techniques [3, 32, 38, 54, 55, 61, 64] were proposed to
enhance the feasibility of generated test inputs by leveraging dy-
namic information from sample executions and learning desirable
object states. Other techniques were proposed to generate feasible
test oracles based on the realistic specifications of expected pro-
gram behaviors. These techniques use program invariants [38, 60],
sequences of program execution [21], seeded defects [17, 52], and
JavaDoc comments [22]. However, these techniques were developed
to improve code coverage or fault detection ability rather than to
reduce the false alarm rate of generated failing tests like Paf.

There has been some research that assesses the effectiveness of a
test suite in detecting faults based on several test adequacy criteria.
Some studies [13, 30] showed that the dataflow adequacy criteria
can influence the test suite effectiveness in the fault-detecting ability.
This finding supports the underlying analysis of Paf, which uses
data-dependences chains to identify fault-revealing tests. An earlier
study [37] showed that the size of a test suite can also influence the
fault-detection ability. It found that after a certain point, the fault
detection rate barely increases even though the size of a test suite
keeps increasing. This finding also supports our results where Paf
assigns high ranks for most fault-revealing test flow-sets.

Additionally, to improve the fault detection ability of test suites,
attention was paid to the problem of faulty test code, which pro-
duces false alarms and reduces the quality of test suites [57]. Herzig
and Nagappan [28] developed a false alarm detection approach
by mining association rules using the false alarm history in the
past. A test analysis technique developed by Waterloo et al. [59]
categorizes test patterns to find faulty tests.

Our approach differs from these techniques in that it targets
automatically-generated tests and uses program analysis rather
than machine learning. It does not assume the availability of a false
alarm history. Moreover, these techniques target faulty or obsolete
tests written by developers. Thus, the root causes of these faults
differ from ours, which is related to implicit precondition violations.

A number of techniques were developed to improve test suite
maintenance. Some of them aimed to assess the quality of human-
written tests using dynamic tainting analysis [29] and test depen-
dency analysis [24]. ZoomIn [43] is a technique developed to help
improve oracles of automatically-generated tests using dynamic
invariants from human-written tests. The main goal of these tech-
nique is different from ours because they try to improve the quality
of test suites [24, 29] and test oracles [43] for test suite maintenance
rather than for failure inspection.

7 CONCLUSION AND FUTUREWORK

In this paper, we presented a technique called Paf that clusters
generated failing tests into test flow-sets due to the same fault
and prioritizes these tests in a reverse order to their likelihood of
violating an implicit precondition. We introduce the concepts of
crash variables and crash origins.

Paf performs the analysis in three steps. First, Paf derives a
failure-inducing dataflow concerning the crash variable for each
failing test. Tests inducing similar failure-inducing dataflows are
considered to share a common failing cause and clustered into the
same test flow-set. Second, Paf checks whether such dataflows are
local or non-local to the execution of the method under test (MUT)
based on the location of their crash origins. Local dataflows are
given higher priority than non-local ones because a local dataflow
indicates the failure is wholly induced by the MUT’s implemen-
tation programmed by its developers. As a result, the chances of
its violating an MUT’s precondition is small. Third, Paf examines
the dataflows exercised by other related passing tests to estimate
the likelihood of potential precondition violations. The likelihood
increases when more dataflows concerning the crash variable are
found in other passing tests. The likelihood is measured by calcu-
lating the proportion of other dataflows exercised by passing tests.
Paf finally reorders failing tests first by placing the group of tests
exercising local dataflows prior to that exercising non-local ones.
Paf further sorts tests in each group by the violation likelihood.

We conducted experiments based on five popular open-source
projects with tests generated by Randoop. The experimental results
show that test flow-sets can effectively cluster fault revealing tests
arising from a common cause. The results also show that local-
ity analysis can accurately classify fault-revealing tests, and the
likelihood calculation is effective in prioritizing the fault-revealing
tests. Comparing with ReBucket [8] and MSeer [19], Paf can more
accurately cluster fault revealing tests. It also outperforms exist-
ing techniques that filter potential precondition violations using
JCrasher’s heuristics [6] and Daikon [12]’s invariants [7, 38].

For future work, we plan to extend our empirical studies with
other testing tools such as EvoSuite. We also plan to adapt our ap-
proach to human-written tests and investigate their fault-detection
capability.

688

Which Generated Test Failures are Fault Revealing? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compil-
ers: Principles, Techniques, and Tools (2Nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[2] Andrea Arcuri. 2018. An experience report on applying software testing aca-
demic results in industry: we need usable automated test generation. Empirical
Software Engineering 23, 4 (01 Aug 2018), 1959–1981. https://doi.org/10.1007/
s10664-017-9570-9

[3] Shay Artzi, Michael D. Ernst, Adam Kieżun, Carlos Pacheco, and Jeff H. Perkins.
2006. Finding the needles in the haystack: Generating legal test inputs for object-
oriented programs. In 1st Workshop on Model-Based Testing and Object-Oriented
Systems (M-TOOS). Portland, OR.

[4] Kevin Bartz, Jack W. Stokes, John C. Platt, Ryan Kivett, David Grant, Silviu
Calinoiu, and Gretchen Loihle. 2008. Finding Similar Failures Using Callstack
Similarity. In Proceedings of the Third Conference on Tackling Computer Systems
Problems with Machine Learning Techniques (SysML’08). USENIX Association,
Berkeley, CA, USA, 1–1. http://dl.acm.org/citation.cfm?id=1855895.1855896

[5] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-coverage Tests for Complex Systems Programs.
In Proceedings of the 8th USENIX Conference on Operating Systems Design and
Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 209–224.
http://dl.acm.org/citation.cfm?id=1855741.1855756

[6] Christoph Csallner and Yannis Smaragdakis. 2004. JCrasher: An Automatic
Robustness Tester for Java. Softw. Pract. Exper. 34, 11 (Sept. 2004), 1025–1050.
https://doi.org/10.1002/spe.602

[7] Christoph Csallner, Yannis Smaragdakis, and Tao Xie. 2008. DSD-Crasher: A
Hybrid Analysis Tool for Bug Finding. ACM Trans. Softw. Eng. Methodol. 17, 2,
Article 8 (May 2008), 37 pages. https://doi.org/10.1145/1348250.1348254

[8] Yingnong Dang, Rongxin Wu, Hongyu Zhang, Dongmei Zhang, and Peter Nobel.
2012. ReBucket: A Method for Clustering Duplicate Crash Reports Based on Call
Stack Similarity. In Proceedings of the 34th International Conference on Software
Engineering (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 1084–1093. http://dl.
acm.org/citation.cfm?id=2337223.2337364

[9] William Dickinson, David Leon, and Andy Podgurski. 2001. Finding Failures by
Cluster Analysis of Execution Profiles. In Proceedings of the 23rd International Con-
ference on Software Engineering (ICSE ’01). IEEE Computer Society, Washington,
DC, USA, 339–348. http://dl.acm.org/citation.cfm?id=381473.381509

[10] Hyunsook Do and Gregg Rothermel. 2006. On the Use of Mutation Faults in
Empirical Assessments of Test Case Prioritization Techniques. IEEE Trans. Softw.
Eng. 32, 9 (Sept. 2006), 733–752. https://doi.org/10.1109/TSE.2006.92

[11] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. 2000. Prioritiz-
ing Test Cases for Regression Testing. In Proceedings of the 2000 ACM SIGSOFT
International Symposium on Software Testing and Analysis (ISSTA ’00). ACM, New
York, NY, USA, 102–112. https://doi.org/10.1145/347324.348910

[12] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon System for
Dynamic Detection of Likely Invariants. Sci. Comput. Program. 69, 1-3 (Dec. 2007),
35–45. https://doi.org/10.1016/j.scico.2007.01.015

[13] P. G. Frankl and S. N. Weiss. 1993. An Experimental Comparison of the Effective-
ness of Branch Testing and Data Flow Testing. IEEE Trans. Softw. Eng. 19, 8 (Aug.
1993), 774–787. https://doi.org/10.1109/32.238581

[14] Gordon Fraser and Andrea Arcuri. 2013. Whole Test Suite Generation. IEEE
Transactions on Software Engineering 39, 2 (feb. 2013), 276 –291. https://doi.org/
10.1109/TSE.2012.14

[15] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.
2013. Does Automated White-box Test Generation Really Help Software Testers?
(ISSTA 2013). ACM,NewYork, NY, USA, 291–301. https://doi.org/10.1145/2483760.
2483774

[16] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.
2014. Does Automated Unit Test Generation Really Help Software Testers? A
Controlled Empirical Study. ACM Transactions on Software Engineering and
Methodology (2014).

[17] Gordon Fraser and Andreas Zeller. 2010. Mutation-driven Generation of Unit
Tests and Oracles (ISSTA ’10). ACM, New York, NY, USA, 147–158. https://doi.
org/10.1145/1831708.1831728

[18] G. Fraser and A. Zeller. 2011. Exploiting Common Object Usage in Test Case
Generation. In ICST’11: Proceedings of the 4th International Conference on Software
Testing, Verification and Validation. IEEE Computer Society, 80–89.

[19] R. Gao and W. E. Wong. 2017. MSeer-An Advanced Technique for Locating
Multiple Bugs in Parallel. IEEE Transactions on Software Engineering PP, 99 (2017),
1–1. https://doi.org/10.1109/TSE.2017.2776912

[20] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed
Automated Random Testing (PLDI ’05). ACM, New York, NY, USA, 213–223.
https://doi.org/10.1145/1065010.1065036

[21] Alberto Goffi. 2014. Automatic Generation of Cost-effective Test Oracles. In
Companion Proceedings of the 36th International Conference on Software Engi-
neering (ICSE Companion 2014). ACM, New York, NY, USA, 678–681. https:
//doi.org/10.1145/2591062.2591078

[22] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic generation of oracles for exceptional behaviors. In ISSTA 2016, Proceedings
of the 2016 International Symposium on Software Testing and Analysis. Saarbrücken,
Genmany, 213–224.

[23] Florian Gross, Gordon Fraser, and Andreas Zeller. 2012. Search-based System
Testing: High Coverage, No False Alarms (ISSTA 2012). ACM, New York, NY, USA,
67–77. https://doi.org/10.1145/2338965.2336762

[24] Alex Gyori, August Shi, Farah Hariri, and Darko Marinov. 2015. Reliable Testing:
Detecting State-polluting Tests to Prevent Test Dependency (ISSTA 2015). ACM,
New York, NY, USA, 223–233. https://doi.org/10.1145/2771783.2771793

[25] Dan Hao, Lingming Zhang, Lu Zhang, Gregg Rothermel, and Hong Mei. 2014. A
Unified Test Case Prioritization Approach. ACM Trans. Softw. Eng. Methodol. 24,
2, Article 10 (Dec. 2014), 31 pages. https://doi.org/10.1145/2685614

[26] Mary Jean Harrold and Gregg Rothermel. 1994. Performing Data Flow Testing
on Classes. In Proceedings of the 2Nd ACM SIGSOFT Symposium on Foundations of
Software Engineering (SIGSOFT ’94). ACM, New York, NY, USA, 154–163. https:
//doi.org/10.1145/193173.195402

[27] Mary Jean Harrold and Mary Lou Soffa. 1994. Efficient Computation of Inter-
procedural Definition-use Chains. ACM Trans. Program. Lang. Syst. 16, 2 (March
1994), 175–204. https://doi.org/10.1145/174662.174663

[28] Kim Herzig and Nachiappan Nagappan. 2015. Empirically Detecting False Test
Alarms Using Association Rules. In Companion Proceedings of the 37th Inter-
national Conference on Software Engineering. IEEE – Institute of Electrical and
Electronics Engineers. http://research.microsoft.com/apps/pubs/default.aspx?
id=238351

[29] Chen Huo and James Clause. 2014. Improving Oracle Quality by Detecting Brittle
Assertions and Unused Inputs in Tests. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE 2014). ACM,
New York, NY, USA, 621–631. https://doi.org/10.1145/2635868.2635917

[30] Monica Hutchins, Herb Foster, Tarak Goradia, and Thomas Ostrand. 1994. Exper-
iments of the Effectiveness of Dataflow- and Controlflow-based Test Adequacy
Criteria. In Proceedings of the 16th International Conference on Software Engineer-
ing (ICSE ’94). IEEE Computer Society Press, Los Alamitos, CA, USA, 191–200.
http://dl.acm.org/citation.cfm?id=257734.257766

[31] Nehul Jain, Saikat Dutta, Ansuman Banerjee, Anil K. Ghosh, Lihua Xu, and
Huibiao Zhu. 2013. Using Daikon to Prioritize and Group Unit Bugs. In
Formal Aspects of Component Software - 10th International Symposium, FACS
2013, Nanchang, China, October 27-29, 2013, Revised Selected Papers. 215–233.
https://doi.org/10.1007/978-3-319-07602-7_14

[32] Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K. Chang. 2010. OCAT: Object
Capture-based Automated Testing. In Proceedings of the 19th International Sym-
posium on Software Testing and Analysis (ISSTA ’10). ACM, New York, NY, USA,
159–170. https://doi.org/10.1145/1831708.1831729

[33] James A. Jones, James F. Bowring, and Mary Jean Harrold. 2007. Debugging in
Parallel. In Proceedings of the 2007 International Symposium on Software Testing
and Analysis (ISSTA ’07). ACM, New York, NY, USA, 16–26. https://doi.org/10.
1145/1273463.1273468

[34] Rene Just, Gregory M. Kapfhammer, and Franz Schweiggert. 2012. Using Non-
redundant Mutation Operators and Test Suite Prioritization to Achieve Efficient
and Scalable Mutation Analysis. In Proceedings of the 2012 IEEE 23rd International
Symposium on Software Reliability Engineering (ISSRE ’12). IEEE Computer Society,
Washington, DC, USA, 11–20. https://doi.org/10.1109/ISSRE.2012.31

[35] Chao Liu and Jiawei Han. 2006. Failure Proximity: A Fault Localization-based
Approach. In Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (SIGSOFT ’06/FSE-14). ACM, New York, NY,
USA, 46–56. https://doi.org/10.1145/1181775.1181782

[36] Natwar Modani, Rajeev Gupta, Guy Lohman, Tanveer Syeda-Mahmood, and
Laurent Mignet. 2007. Automatically Identifying Known Software Problems. In
Proceedings of the 2007 IEEE 23rd International Conference on Data Engineering
Workshop (ICDEW ’07). IEEE Computer Society, Washington, DC, USA, 433–441.
https://doi.org/10.1109/ICDEW.2007.4401026

[37] Akbar Siami Namin and James H. Andrews. 2009. The Influence of Size and
Coverage on Test Suite Effectiveness. In Proceedings of the Eighteenth International
Symposium on Software Testing and Analysis (ISSTA ’09). ACM, New York, NY,
USA, 57–68. https://doi.org/10.1145/1572272.1572280

[38] Carlos Pacheco and Michael D. Ernst. 2005. Eclat: Automatic Generation and
Classification of Test Inputs. In Proceedings of the 19th European Conference on
Object-Oriented Programming (ECOOP’05). Springer-Verlag, Berlin, Heidelberg,
504–527. https://doi.org/10.1007/11531142_22

[39] Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball. 2008. Finding Errors in
.Net with Feedback-directed Random Testing (ISSTA ’08). ACM, New York, NY,
USA, 87–96. https://doi.org/10.1145/1390630.1390643

[40] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. 2007.
Feedback-directed random test generation. In ICSE ’07: Proceedings of the 29th
International Conference on Software Engineering. IEEE Computer Society, Min-
neapolis, MN, USA.

[41] H. D. Pande, W. A. Landi, and B. G. Ryder. 1994. Interprocedural Def-Use Asso-
ciations for C Systems with Single Level Pointers. IEEE Trans. Softw. Eng. 20, 5

689

https://doi.org/10.1007/s10664-017-9570-9
https://doi.org/10.1007/s10664-017-9570-9
http://dl.acm.org/citation.cfm?id=1855895.1855896
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1002/spe.602
https://doi.org/10.1145/1348250.1348254
http://dl.acm.org/citation.cfm?id=2337223.2337364
http://dl.acm.org/citation.cfm?id=2337223.2337364
http://dl.acm.org/citation.cfm?id=381473.381509
https://doi.org/10.1109/TSE.2006.92
https://doi.org/10.1145/347324.348910
https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/10.1109/32.238581
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1109/TSE.2012.14
https://doi.org/10.1145/2483760.2483774
https://doi.org/10.1145/2483760.2483774
https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1145/1831708.1831728
https://doi.org/10.1109/TSE.2017.2776912
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/2591062.2591078
https://doi.org/10.1145/2591062.2591078
https://doi.org/10.1145/2338965.2336762
https://doi.org/10.1145/2771783.2771793
https://doi.org/10.1145/2685614
https://doi.org/10.1145/193173.195402
https://doi.org/10.1145/193173.195402
https://doi.org/10.1145/174662.174663
http://research.microsoft.com/apps/pubs/default.aspx?id=238351
http://research.microsoft.com/apps/pubs/default.aspx?id=238351
https://doi.org/10.1145/2635868.2635917
http://dl.acm.org/citation.cfm?id=257734.257766
https://doi.org/10.1007/978-3-319-07602-7_14
https://doi.org/10.1145/1831708.1831729
https://doi.org/10.1145/1273463.1273468
https://doi.org/10.1145/1273463.1273468
https://doi.org/10.1109/ISSRE.2012.31
https://doi.org/10.1145/1181775.1181782
https://doi.org/10.1109/ICDEW.2007.4401026
https://doi.org/10.1145/1572272.1572280
https://doi.org/10.1007/11531142_22
https://doi.org/10.1145/1390630.1390643

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Mijung Kim, Shing-Chi Cheung, and Sunghun Kim

(May 1994), 385–403. https://doi.org/10.1109/32.286418
[42] Sangmin Park, Mary Jean Harrold, and Richard Vuduc. 2013. Griffin: Grouping

Suspicious Memory-access Patterns to Improve Understanding of Concurrency
Bugs. In Proceedings of the 2013 International Symposium on Software Testing and
Analysis (ISSTA 2013). ACM, New York, NY, USA, 134–144. https://doi.org/10.
1145/2483760.2483792

[43] Fabrizio Pastore and Leonardo Mariani. 2015. ZoomIn: Discovering Failures by
Detecting Wrong Assertions. In Software Engineering (ICSE), 2015 IEEE/ACM 37th
IEEE International Conference on, Vol. 1. 66–76. https://doi.org/10.1109/ICSE.2015.
29

[44] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Ji-
ayang Sun, and Bin Wang. 2003. Automated Support for Classifying Software
Failure Reports. In Proceedings of the 25th International Conference on Software
Engineering (ICSE ’03). IEEE Computer Society, Washington, DC, USA, 465–475.
http://dl.acm.org/citation.cfm?id=776816.776872

[45] Michael Pradel and Thomas R. Gross. 2012. Leveraging Test Generation and
Specification Mining for Automated Bug Detection Without False Positives (ICSE
’12). IEEE Press, Piscataway, NJ, USA, 288–298. http://dl.acm.org/citation.cfm?
id=2337223.2337258

[46] Baishakhi Ray, Meiyappan Nagappan, Christian Bird, Nachiappan Nagappan,
and Thomas Zimmermann. 2015. The Uniqueness of Changes: Characteristics
and Applications (MSR ’15). ACM.

[47] André Riboira and Rui Abreu. 2010. The GZoltar Project: A Graphical Debugger
Interface. In Testing – Practice and Research Techniques, Leonardo Bottaci and
Gordon Fraser (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 215–218.

[48] Gregg Rothermel, Roland J. Untch, and Chengyun Chu. 2001. Prioritizing Test
Cases For Regression Testing. IEEE Trans. Softw. Eng. 27, 10 (Oct. 2001), 929–948.
https://doi.org/10.1109/32.962562

[49] Raul Santelices, Yiji Zhang, Haipeng Cai, and Siyuan Jiang. 2013. DUA-forensics:
A Fine-grained Dependence Analysis and Instrumentation Framework Based on
Soot. In Proceedings of the 2Nd ACM SIGPLAN International Workshop on State Of
the Art in Java Program Analysis (SOAP ’13). ACM, New York, NY, USA, 13–18.
https://doi.org/10.1145/2487568.2487574

[50] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic Unit
Testing Engine for C (ESEC/FSE-13). ACM, New York, NY, USA, 263–272. https:
//doi.org/10.1145/1081706.1081750

[51] Sina Shamshiri, Rene Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do Automatically Generated Unit Tests Find Real Faults?
An Empirical Study of Effectiveness and Challenges. In Proceedings of the 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 201–211.

[52] Matt Staats, Gregory Gay, and Mats P. E. Heimdahl. 2012. Automated Oracle
Creation Support, or: How I Learned to Stop Worrying About Fault Propagation
and Love Mutation Testing (ICSE ’12). IEEE Press, Piscataway, NJ, USA, 870–880.

http://dl.acm.org/citation.cfm?id=2337223.2337326
[53] Michael Steinbach, George Karypis, and Vipin Kumar. 2000. A comparison of

document clustering techniques. In In KDD Workshop on Text Mining.
[54] Suresh Thummalapenta, Jonathan de Halleux, Nikolai Tillmann, and Scott

Wadsworth. 2010. DyGen: Automatic Generation of High-coverage Tests via
Mining Gigabytes of Dynamic Traces. In Proceedings of the 4th International Con-
ference on Tests and Proofs (TAP’10). Springer-Verlag, Berlin, Heidelberg, 77–93.
http://dl.acm.org/citation.cfm?id=1894403.1894415

[55] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and
Wolfram Schulte. 2009. MSeqGen: Object-oriented Unit-test Generation via
Mining Source Code (ESEC/FSE ’09). ACM, New York, NY, USA, 193–202. https:
//doi.org/10.1145/1595696.1595725

[56] Paolo Tonella. 2004. Evolutionary Testing of Classes (ISSTA ’04). ACM, New York,
NY, USA, 119–128. https://doi.org/10.1145/1007512.1007528

[57] A. Vahabzadeh, A. M. Fard, and A. Mesbah. 2015. An empirical study of bugs in
test code. In Software Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on. 101–110. https://doi.org/10.1109/ICSM.2015.7332456

[58] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In
Proceedings of the 1999 Conference of the Centre for Advanced Studies on Collabo-
rative Research (CASCON ’99). IBM Press, 13–. http://dl.acm.org/citation.cfm?
id=781995.782008

[59] M. Waterloo, S. Person, and S. Elbaum. 2015. Test Analysis: Searching for Faults
in Tests (N). In Automated Software Engineering (ASE), 2015. 149–154. https:
//doi.org/10.1109/ASE.2015.37

[60] Yi Wei, Carlo A. Furia, Nikolay Kazmin, and Bertrand Meyer. 2011. Inferring
Better Contracts (ICSE ’11). ACM, New York, NY, USA, 191–200. https://doi.org/
10.1145/1985793.1985820

[61] Y. Wei, H. Roth, C. A. Furia, Y. Pei, A. Horton, M. Steindorfer, M. Nordio, and
B. Meyer. 2011. Stateful testing: Finding more errors in code and contracts.
In Automated Software Engineering (ASE), 2011 26th IEEE/ACM International
Conference on. 440–443. https://doi.org/10.1109/ASE.2011.6100094

[62] Lingming Zhang, Darko Marinov, and Sarfraz Khurshid. 2013. Faster Mutation
Testing Inspired by Test Prioritization and Reduction. In Proceedings of the 2013
International Symposium on Software Testing and Analysis (ISSTA 2013). ACM,
New York, NY, USA, 235–245. https://doi.org/10.1145/2483760.2483782

[63] Lingming Zhang, Darko Marinov, Lu Zhang, and Sarfraz Khurshid. 2012. Re-
gression Mutation Testing. In Proceedings of the 2012 International Symposium on
Software Testing and Analysis (ISSTA 2012). ACM, New York, NY, USA, 331–341.
https://doi.org/10.1145/2338965.2336793

[64] Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst. 2011. Combined Static
and Dynamic Automated Test Generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis (ISSTA ’11). ACM, New York, NY,
USA, 353–363. https://doi.org/10.1145/2001420.2001463

690

https://doi.org/10.1109/32.286418
https://doi.org/10.1145/2483760.2483792
https://doi.org/10.1145/2483760.2483792
https://doi.org/10.1109/ICSE.2015.29
https://doi.org/10.1109/ICSE.2015.29
http://dl.acm.org/citation.cfm?id=776816.776872
http://dl.acm.org/citation.cfm?id=2337223.2337258
http://dl.acm.org/citation.cfm?id=2337223.2337258
https://doi.org/10.1109/32.962562
https://doi.org/10.1145/2487568.2487574
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
http://dl.acm.org/citation.cfm?id=2337223.2337326
http://dl.acm.org/citation.cfm?id=1894403.1894415
https://doi.org/10.1145/1595696.1595725
https://doi.org/10.1145/1595696.1595725
https://doi.org/10.1145/1007512.1007528
https://doi.org/10.1109/ICSM.2015.7332456
http://dl.acm.org/citation.cfm?id=781995.782008
http://dl.acm.org/citation.cfm?id=781995.782008
https://doi.org/10.1109/ASE.2015.37
https://doi.org/10.1109/ASE.2015.37
https://doi.org/10.1145/1985793.1985820
https://doi.org/10.1145/1985793.1985820
https://doi.org/10.1109/ASE.2011.6100094
https://doi.org/10.1145/2483760.2483782
https://doi.org/10.1145/2338965.2336793
https://doi.org/10.1145/2001420.2001463

	Abstract
	1 Introduction
	2 Motivating Example
	3 Our Approach
	3.1 Phase 1: Find Crash Variable and Its Origin
	3.2 Phase 2: Group and Partition Failing Tests
	3.3 Phase 3: Calculate Violation Likelihood
	3.4 Phase 4: Reorder Failing Tests

	4 Experiment Setup
	4.1 Implementation
	4.2 Subjects and Experiment Design

	5 Experimental Results
	5.1 RQ1: Clustering Performance
	5.2 RQ2: Accuracy of Locality Based Partitioning
	5.3 RQ3: Prioritization Performance
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References

