AUTOMATED BUG NEIGHBORHOOD ANALYSIS FOR IDENTIFYING INCOMPLETE BUG FIXES

Mijung Kim,^{*} Saurabh Sinha,[†] Carsten Gorg,^{*} Hina Shah,^{*} Mary Jean Harrold,^{*} and Mangala Gowri Nanda[†]

> * Georgia Institute of Technology + IBM Research – India

Supported by NSF under CCF-0429117, CCF-0541049, and CCF-0725202, and IBM by a Software Quality Innovation Faculty Award

Existing Techniques

- Automated techniques to detect Java runtime exceptions (e.g., null-pointer exceptions)
 - ESC/Java [Flanagan et al. PLDI 2002]
 - SALSA [Loginov et al. ISSTA 2008]
 - XYLEM [Nanda and Sinha ICSE 2009]
 - XYLEM w/ Stack trace [Sinha et al. ISSTA 2009]

Existing Techniques

 Automated techniques to detect Java runtime exceptions (e.g., null-pointer exceptions)

Limitations Techniques don't identify whether and how bugs are fixed

Existing Techniques

 Automated techniques to detect Java runtime exceptions (e.g., null-pointer exceptions)

Limitations Techniques don't identify whether and how bugs are fixed

- Research that has investigated bug fixes
 - Evaluating static analysis defect warnings on production software [Ayewah, et al. PASTE 2007]
 - Tracking defect warnings across versions [Spacco, Hovemeyer, and Pugh MSR 2006]

Existing Techniques

 Automated techniques to detect Java runtime exceptions (e.g., null-pointer exceptions)

Limitations Techniques don't identify whether and how bugs are fixed

Research that has investigated bug fixes

Limitations Techniques don't identify whether attempted bug fixes are complete

Incomplete Bug Fixes

- NPA : Null-Pointer Assignment
- NPR: Null-Pointer deReference

- NPA : Null-Pointer Assignment
- NPR: Null-Pointer deReference

NPA

NPR

Incomplete Bug Fixes NPA : Null-Pointer Assignment NPR: Null-Pointer deReference foo'(int i, j) { $x = null; // NPA_1$ [1] NPA if (j > 10) { [2] if (x != null) // FIX [2a] [3] x.m1(); // NPR₁ [4] x.m2(); } else { NPR [5] x.m3(); [6] x.m4(); } }

- NPA : Null-Pointer Assignment
- NPR: Null-Pointer deReference

NPA


```
Incomplete Bug Fixes

    NPA : Null-Pointer Assignment

    NPR: Null-Pointer deReference

   foo'(int i, j) {
    x = null; // NPA_1
[1]
[2] if (j > 10) {
         if (x != null) // FIX
[2a]
[3]
             x.m1(); // NPR<sub>1</sub>
         x.m2(); // NPR<sub>2</sub>
4]
      } else {
[5]
        x.m3();
[6]
          x.m4();
      }
    }
```

- NPA : Null-Pointer Assignment
- NPR: Null-Pointer deReference

NPA

- NPA : Null-Pointer Assignment
- NPR: Null-Pointer deReference

NPA,

NPR

Our Work	
 Bug neighborhood analysis Computes potential unfixed (NPA, NP 	R) pairs
 Classification of attempted bug fixes complete or incomplete 	s as
 Empirical studies using open-source commercial software Neighborhood can be large and comp 	e and
 Attempted bug fixes can be incomplet 	ie
	15

Dutline	BN Technique	Evaluation	Conclusio
 Bug Neighborhoods (Technique Empirical Evaluation Conclusion 	(BN)		

Example

Example

BN Technique Evaluation Conclusion

BugNeighborhoodAnalysis

• Reaching NPAs for 3: None

f_{00} (int i i) {	
$[1] \qquad x = pull \cdot // pp$	
$[1] X = Hull, // NPA_1$	
[2] if (j > 10) {	
[2a] if (x != null) // FIX	
[3] x.m1(); // NR ₁	
[4] x.m2(); // F-NPR	
} else {	
[5] x.m3(); // M-NPR	
[6] x.m4(); // F-NPR	
}	
}	
$(S_{a}', S_{r}'): (1, 3)$	

BugNeighborhoodAnalysis

BN Technique Evaluation Conclusion

BugNeighborhoodAnalysis

 Reaching NPAs for 3: foo'(int i, j) { [1] $x = null; // NPA_1$ None if (j > 10) { [2] Reachable NPRs for 1: if (x != null) // FIX [2a] 4, 5, 6 [3] x.m1(); // NRR₁ (1, 4)x.m2(); // F-NPR [4] } else { (1, 6) (1, 5)[5] x.m3(); // M-NPR [6] x.m4(); // F-NPR **BugNeighborhood** } • (1,3) ∉ BugNeighborhood } .: FixStatus = fixed but, (S_a', S_r'): (1, 3) incomplete

BugNeighborhoodAnalysis

 Identifying BN for a (S_a', S_r') pair in P' (No Backward NPAs implementation)

Empirical Setup: Subjects

Subject	Classes	Methods	Bytecode Instructions	(NPA, NPR) Pairs
Ant-1.6.0	1858	17204	443254	167
Lucene-2.2.0	381	2815	72691	86
Tomcat-4.1.27	260	4077	101075	97
App-A	278	3933	98225	63
Арр-В	169	1876	46286	119
App-C	2488	13746	340896	107

BN Technique Evaluation Conclusion

Study 1: BN Categories and Sizes

Goal: To examine characteristics of BNs

Method

For each (NPA, NPR)

- Compute BN and BN size
- Classify
 - BN in 1 of 8 categories
 - BN size in 1 of 3 categories

BN Categories

Category	Maybe NPA Present	Maybe NPR Present	Maybe NPR PresentForward NPR Present	
1	NO	NO	NO	
2	NO	NO	YES	
3	NO	YES	NO	
4	NO	YES	YES	
5	YES	NO	NO	
6	YES	NO	YES	
7	YES	YES	NO	
8	YES	YES	YES	

BN Technique Evaluation Conclusion

Occurrences of Each BN Category

BN Size Categories

- Small: pairs ≤ 5
- Medium: $5 < pairs \le 15$
- Large: pairs > 15

Completeness of Attempted Bug Fixes

Subject	# Incomplete Fixes / # Attempted Fixes	BN Categories of Incomplete Fixes		Ir	BN Sizes of Incomplete Fixe		
Ant	4 / 26	C2, C4, C4, C5			1 x Small, 3 x Medium		
Lucene	3 / 17	C4, C4, C4			1 x Small, 2 x Large		
Tomcat	0 / 9						
App-A	0 / 7						
		С	M-NPA	M-MP	R	F-NPR	
		2	Ν	Ν		Y	
		4	Ν	Y		Y	
		5	Y	Ν		Ν	42

Future Work

Contributions

- New bug neighborhood analysis
 - Determines completeness of attempted bug fixes
- Technique that helps developers prevent incomplete fixes in new revisions
- Empirical studies that show
 - large and complex BNs do occur frequently
 - Attempted bug fixes are incomplete in practice

