
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220719961

Automated Bug Neighborhood Analysis for Identifying Incomplete Bug Fixes

Conference Paper · January 2010

DOI: 10.1109/ICST.2010.63 · Source: DBLP

CITATIONS

11
READS

68

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Slicing Multithreaded Java Programs View project

Test Augmentation View project

Hina Shah

Georgia Institute of Technology

13 PUBLICATIONS 219 CITATIONS

SEE PROFILE

Mary Jean Harrold

Georgia Institute of Technology

188 PUBLICATIONS 11,718 CITATIONS

SEE PROFILE

Mangala Gowri Nanda

IBM

38 PUBLICATIONS 870 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mangala Gowri Nanda on 05 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220719961_Automated_Bug_Neighborhood_Analysis_for_Identifying_Incomplete_Bug_Fixes?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220719961_Automated_Bug_Neighborhood_Analysis_for_Identifying_Incomplete_Bug_Fixes?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Slicing-Multithreaded-Java-Programs?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Test-Augmentation?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hina_Shah4?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hina_Shah4?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Georgia_Institute_of_Technology?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Hina_Shah4?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary_Harrold?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary_Harrold?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Georgia_Institute_of_Technology?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary_Harrold?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mangala_Gowri_Nanda?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mangala_Gowri_Nanda?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/IBM2?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mangala_Gowri_Nanda?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mangala_Gowri_Nanda?enrichId=rgreq-6aecb3e572d946c7c0513cb6758d72ac-XXX&enrichSource=Y292ZXJQYWdlOzIyMDcxOTk2MTtBUzoxMDQ1NzY3MzY4MjUzNDVAMTQwMTk0NDQ0NjU5Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Automated Bug Neighborhood Analysis for Identifying Incomplete Bug Fixes

Mijung Kim�, Saurabh Sinha�, Carsten Görg�, Hina Shah�, Mary Jean Harrold�, and Mangala Gowri Nanda�
�Georgia Institute of Technology

Email: �mijung.kim�goerg�hinashah�harrold�@cc.gatech.edu
�IBM Research – India

Email: �saurabhsinha�mgowri�@in.ibm.com

Abstract—Although many static-analysis techniques have
been developed for automatically detecting bugs, such as null
dereferences, fewer automated approaches have been presented
for analyzing whether and how such bugs are fixed. Attempted
bug fixes may be incomplete in that a related manifestation of
the bug remains unfixed. In this paper, we characterize the
“completeness” of attempted bug fixes that involve the flow
of invalid values from one program point to another, such as
null dereferences, in Java programs. Our characterization is
based on the definition of a bug neighborhood, which is a scope
of flows of invalid values. We present an automated analysis
that, given two versions � and �

� of a program, identifies the
bugs in � that have been fixed in �

�, and classifies each fix
as complete or incomplete. We implemented our technique for
null-dereference bugs and conducted empirical studies using
open-source projects. Our results indicate that, for the projects
we studied, many bug fixes are not complete, and thus, may
cause failures in subsequent executions of the program.

I. INTRODUCTION

Java programs often contain bugs (or faults), such as
dereferences of null values and array accesses with incorrect
index values, that cause the Java Virtual Machine to throw
runtime exceptions. These bugs involve the flow of invalid
values from one program point to another program point
where the invalid values cause runtime exceptions. Although
many automated techniques have been developed to detect
such bugs statically (e.g., [1], [2], [3], [4], [5], [6]), fewer
techniques have been presented for identifying whether and
how such bugs get fixed [7][8]. An attempted bug fix may
be “incomplete” in that the fix leaves related manifestations
of a bug that could occur in other executions unfixed.

To illustrate the problem of incomplete bug fixes, con-
sider a null-pointer exception, which occurs because a null-
pointer assignment reaches a null-pointer dereference. A
null-pointer assignment (NPA) is a statement at which
a null value originates. Examples of null-pointer assign-
ments include statements “x = null,” “return null,”
and “foo(null).” A null-pointer dereference (NPR) is a
statement at which the dereferenced variable could poten-
tially be null. In Figure 1, the gray box in the graph on
the left depicts a null-pointer exception that has occurred
in program � where null-pointer assignment NPA� reaches
null-pointer dereference NPR�. NPR� represents a null-
pointer dereference that may be reached by NPA� in � �,

Figure 1. Example to illustrate an incomplete bug fix.

depending on how NPR� is fixed, and NPR� represents a
null-pointer dereference that can be reached from NPA� in
another execution of � or � �.

Suppose a developer tries to fix this null-pointer exception
by adding a null check around NPR� to produce � �. As the
graph on the right in Figure 1 shows, this change removes the
flow of the null value from NPA� to NPR�, and it guarantees
that an exception will not occur at NPR� on any execution of
� �. However, this fix is incomplete in that other exceptions
may still occur because of NPA�. Because NPR� no longer
throws an exception, the null value at NPA� may now reach
NPR�, and cause an exception. Because the null value at
NPA� can still flow to NPR�, NPA� may reach NPR� on
another execution, and cause an exception. We consider an
attempted bug fix, with respect to a pair (NPA, NPR) to be
incomplete if either the NPA or the NPR could cause an
exception to occur in another execution of � �.

Existing research that has investigated bug fixes (e.g., [7],
[8]) does not consider this completeness aspect of a bug
fix. Ayewah and colleagues [7] studied, for three software
systems, the bugs that were present in one build, but not
reported in the next build. They also examined the types
of program changes that caused the bugs to be deleted.
However, they did not investigate whether the bug fixes
were complete. Similarly, Spacco, Hovemeyer, and Pugh [8]
examined the evolution of bugs over successive releases
of Sun’s JDK core runtime library, but they performed no
evaluation of how the bugs that appeared in one version
and not in a subsequent version were fixed. However, in our
empirical studies, we found many instances in which a bug

2010 Third International Conference on Software Testing, Verification and Validation

978-0-7695-3990-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ICST.2010.63

383

was fixed in an incomplete way. In this paper, we address
these limitations of previous approaches.

First, we present a characterization of completeness of a
bug fix. Our characterization is based on the definition of a
bug neighborhood, which intuitively is a set of related flows
of invalid values. For an attempted bug fix to be complete,
all related value flows in the bug neighborhood of the flow
must be fixed as well. We describe different ways in which
the bug neighborhood may be affected by code changes that
are targeted toward fixing a bug. Our technique is applicable
to the class of bugs that involves the flow of an invalid value
from one program point to another, where the value causes
a runtime exception. Examples of such exceptions include
null-pointer exceptions, array-index exceptions, and class-
cast exceptions. In this paper, we illustrate the application
of the approach to null-pointer exceptions.

Second, we present an automated analysis that identifies
whether an (NPA, NPR) pair in program � has been fixed
in a modified version � � of the program. For an attempted
bug fix, the analysis also identifies whether the fix is
complete according to our definition of completeness. Given
an (NPA, NPR) pair in � , the analysis technique identifies
the matching pair (NPA�, NPR�) in � �.1 Next, the technique
determines whether there are other NPRs in � � related to
NPA� and other NPAs in � � related to NPR� that could
cause null-pointer exceptions in other executions of � �. To
do this, the technique performs a backward analysis from
NPR� and a forward analysis from NPA�, and determines
whether a bug fix has been attempted with respect to (NPA,
NPR). If a fix has been attempted, it classifies the fix as
complete or incomplete. This step of the analysis leverages
the interprocedural null-dereference analysis implemented in
a tool called XYLEM [5] and extensions to that analysis [9],
which we presented in previous work.

In this paper, we also present the results of empirical stud-
ies that we performed using open-source and commercial
software. Our studies show that bug neighborhoods can be
quite large and that there are many instances in which bug
fixes are incomplete. These studies illustrate the need for a
technique like ours that can alert the developer to attempted
bug fixes that are incomplete and that can cause exceptions
to occur in other executions.

The main benefit of our technique is that it can automati-
cally detect incomplete bug fixes, and highlight parts of the
program that should be examined, and potentially changed,
to ensure that a fix is complete. Our technique could be
implemented in an interactive debugging tool that, for a
given bug, suggests to the developer the types of fixes that
would be complete, and identifies the parts of the program
that should be examined to implement the fix. Thus, using
the technique, bug fixes can be made more effective.

1It is possible that the NPA, the NPR, or both are deleted and, therefore,
do not occur in � �.

The main contributions of the paper are:
� An approach for classifying attempted bug fixes as

complete or incomplete that provides information to
assist the developer in getting a complete fix.

� An implementation of the technique for null-
dereference bugs.

� Empirical results that show that, for the subjects we
studied, bug neighborhoods for (NPA, NPR) pairs are
large in size and varied in type, and that many attempted
bug fixes are incomplete.

II. COMPLETENESS OF AN ATTEMPTED BUG FIX

In this section, we define completeness of an attempted
bug fix for a null-pointer dereference in a Java program.
First, we present the definition and analysis of a bug
neighborhood, and use the bug neighborhood to define a
complete fix (Section II-A). Then, we illustrate the potential
resulting bug neighborhoods after various kinds of fixes are
attempted for a null-pointer bug (Section II-B).

A. Bug neighborhoods and complete fixes

A null-dereference bug occurs with respect to an (NPA,
NPR) pair in a program � . As we illustrated in the Introduc-
tion, an attempted fix for such a bug can leave unresolved
manifestations related to the pair in the modified version � �,
although it removes the current bug in this execution. Those
manifestations, which could cause null-pointer exceptions
related to the (NPA, NPR) in other executions, constitute a
bug neighborhood for the (NPA, NPR) pair.

Figure 2 illustrates the concept of a bug neighborhood.
The figure shows that the bug neighborhood for (NPA�,
NPR�) can contain (NPA, NPR) pairs consisting of four
types of NPAs and NPRs related to (NPA�, NPR�): Maybe
NPAs, Maybe NPRs, Forward NPRs, and Backward NPAs.
In the figure, Maybe NPAs and Maybe NPRs are connected
to NPR� and NPA�, respectively, with solid edges to indicate
that they are reachable in other executions. Forward NPRs
and Backward NPAs are connected to NPR� and NPA�,
respectively, with dashed edges to indicate that they may be
reachable in other executions, depending on how the (NPA�,
NPR�) is fixed. Forward NPRs and Backward NPAs are also
connected to Maybe NPRs and Maybe NPAs.

Given (NPA�, NPR�), our bug-neighborhood analysis au-
tomatically identifies the other NPAs and NPRs that induce
its bug neighborhood.

1) Maybe NPRs: Maybe NPRs are those null-pointer
dereferences that might be reached by NPA� in another
execution if the (NPA�, NPR�) pair is not fixed completely.
Our technique performs a forward analysis from NPA� to
find these Maybe NPRs. In Figure 2, there are two Maybe
NPRs associated with NPA�—Maybe NPR� and Maybe
NPR�—resulting in (NPA�, Maybe NPR�) and (NPA�,
Maybe NPR�) being added to the bug neighborhood for
(NPA�, NPR�).

384

Figure 2. Bug neighborhood for (NPA� ,NPR�) pair.

2) Maybe NPAs: Maybe NPAs are analogous to Maybe
NPRs, and are those null-pointer assignments that might
reach NPR� in another execution if the (NPA�, NPR�) pair
is not fixed completely. Our technique performs a backward
analysis from NPR� to find these Maybe NPAs. In Figure 2,
there are two Maybe NPAs associated with NPR�—Maybe
NPA� and Maybe NPA�—resulting in (Maybe NPA�, NPR�)
and (Maybe NPA�, NPR�) being added to the bug neighbor-
hood for (NPA�, NPR�).

3) Forward NPRs: Forward NPRs are NPRs that may
become reachable from NPA� if the program is changed
so that NPR� is no longer an NPR. These Forward NPRs
are masked by NPR�: if NPR� is changed so that it cannot
be reached by NPA� in � �, these Forward NPRs may
now be reachable from NPA�. Additionally, Forward NPRs
can mask other Forward NPRs. Thus, Forward NPRs are
computed transitively until no possible NPRs can be reached
from NPA� because of fixes to NPR� and to other Forward
NPRs. This transitive step results in a tree of Forward NPAs
rooted at NPR�, which is represented in Figure 2 by the
triangle under NPR�. For � Forward NPRs, (NPA�, Forward
NPR�), � � � , (NPA�, Forward NPR�) are added to the bug
neighborhood for (NPA�, NPR�).

To obtain a complete fix, the bug-neighborhood analy-
sis also requires a similar computation of Forward NPRs
associated with Maybe NPRs. Otherwise, even if (NPA�,
NPR�) has been fixed, it is possible that the Forward NPRs
associated with Maybe NPRs can be reached, and they
may cause other null-pointer exceptions after the attempted
fix. This computation generates additional (NPA�, Forward
NPR�) pairs, and adds them to the bug neighborhood for
(NPA�, NPR�).

4) Backward NPAs: Backward NPAs are analogous to
Forward NPRs, and are NPAs that may reach NPR� if the
program is changed so that NPA� no longer generates a
null value. These Backward NPAs are masked by NPA�:
if NPA� is changed so that it cannot reach NPR� in � �,
these Backward NPAs may now reach NPR�. Additionally,
Backward NPAs could mask other Backward NPAs. Thus,

Backward NPAs are computed transitively until no possible
NPAs can reach NPR� because of fixes to NPA� and to
other Backward NPAs. This transitive step results in a tree
of Backward NPAs rooted at NPA�, which is represented in
Figure 2 as the triangle above NPA�. For � Backward NPAs,
(Backward NPA�, NPR�), � � � , (Backward NPA�, NPR�) are
added to the bug neighborhood (NPA�, NPR�).

Like Forward-NPR computation, computing the bug
neighborhood also requires computing Backward NPAs as-
sociated with Maybe NPAs. This computation generates
additional (Backward NPA�, NPR�) pairs, and adds them
to the bug neighborhood for (NPA�, NPR�).

5) Definitions: We now define bug neighborhood and
complete fix for a null-reference bug represented by the pair
(NPA�, NPR�).

Definition 1: A bug neighborhood for (NPA�, NPR�) is
the set of (NPA, NPR) pairs that are induced by manifes-
tations of Maybe NPAs, Maybe NPRs, Forward NPRs, and
Backward NPAs related to (NPA�, NPR�). The size of the
bug neighborhood for (NPA�, NPR�) is the number of pairs
in the neighborhood.

Definition 2: An attempted bug fix (i.e., change from �

to � �) for (NPA�, NPR�) in � is a complete fix if the bug
neighborhood for the associated pair in � � is empty. Note
that our analysis does not determine correctness of fixes.
Thus, it may be possible that a complete fix is incorrect.

B. Effects of attempted fixes on bug neighborhoods

To illustrate the way in which an attempted bug fix can
change the neighborhood, we present four general types of
attempted fixes for an (NPA, NPR) pair: removing both the
NPA and the NPR, removing the flow between the NPA and
the NPR, removing only the NPA, and removing only the
NPR. For each type, we provide examples of changes that
we have seen in practice to fix the (NPA, NPR) pair, show
how the change affects the bug neighborhood, and discuss
how the computation of the bug neighborhood is affected
for specific types of attempted fixes.

1) Removing both the NPA and the NPR: A fix for an
(NPA, NPR) pair might result in the deletion of both the
NPA and the NPR. This fix could occur, for example, if the
method containing the pair is deleted from � in creating
� �. In such cases, no null-pointer exceptions associated with
either the NPA or the NPR could occur in � �. Therefore, the
bug neighborhood for (NPA, NPR) in � � will be empty, and
thus, the fix is a complete fix.

2) Removing the flow between the NPA and the NPR: A
fix for an (NPA, NPR) pair might involve removing the flow
from the NPA to the NPR, so that the NPR is not reachable
from the NPA in � �. This fix could occur, for example, if
the NPA is in method M�, the NPR is in method M� , and the
method call in M� to M� , on which the NPA flows, is deleted
from � in creating � �. In this case, there may still be Maybe

385

(a) (b) (c)

Figure 3. Potential bug neighborhoods after attempted fixes: (a) removing the flow between the NPA and the NPR, (b) removing only the NPA, and (c)
removing only the NPR.

NPAs and Maybe NPRs to consider, and thus, the analysis
will search for them in � �. Additionally, because neither
the NPA nor the NPR is removed, the Backward NPAs and
Forward NPRs must be considered in the computation of the
bug neighborhood.

Figure 3(a) illustrates the potential components of the bug
neighborhood that result for this type of attempted fix. In the
figure, the flow between NPA� and NPR� has been removed
by the change. Because of this, Backward NPAs� may now
reach NPR� and Forward NPRs� may now be reached from
NPA�; all these must be considered in the computation of the
bug neighborhood. Moreover, the Maybe NPRs reachable
from NPA�, (i.e., Maybe NPR� and Maybe NPR�), along
with their Forward NPRs, must be considered. Similarly,
the Maybe NPAs that reach NPR� (i.e., Maybe NPA� and
Maybe NPA�), along with their Backward NPAs, must be
considered.

3) Removing only the NPA: A fix for an (NPA, NPR)
pair might involve removing only the NPA so that this NPA
cannot reach the NPR in � �. For example, this fix could
occur if the NPA is deleted from � in creating � �. For
another example, this fix could occur if a new object is
created at the NPA so that a null value cannot flow from
this location to NPR in � �. In this case, there may still
be Maybe NPAs to consider because they could reach the
NPR. However, because the NPA has been removed, there
are no Maybe NPRs or Forward NPRs to consider. Thus,
the analysis for computing the bug neighborhood is reduced
to searching only for components of the bug neighborhood
related to the NPR.

Figure 3(b) illustrates the potential components of the bug
neighborhood that result for this type of attempted fix. In
the figure, NPA� has been removed by the change. Because
NPA� is removed, Backward NPAs� may now reach NPR�,
and must be considered. The figure also shows that the
Maybe NPAs that reach NPR�, along with the Backward
NPAs associated with them, must also be considered.

4) Removing only the NPR: A fix for an (NPA, NPR)
pair might involve removing only the NPR so that this NPR
cannot be reached by the NPA in � �. For example, this fix
could occur if the NPR is deleted from � in creating � �.
For another example, this fix could occur if a condition is
added around the NPR in � � so that the NPA cannot flow
to the NPR in � �. In this case, there may still be Maybe
NPRs to consider because they could be reached from the
NPA. However, there are no Maybe NPAs or Backward
NPAs to consider. Thus, the analysis for computing the bug
neighborhood is reduced to searching only for components
of the bug neighborhood related to the NPA.

Figure 3(c) illustrates the potential components of the bug
neighborhood that result for this type of attempted fix. In the
figure, NPR� has been removed by the change. Therefore,
Forward NPRs� may now be reached by NPA�, and must be
considered. The figure also shows that the Maybe NPRs that
are reachable from NPA�, and the Forward NPRs associated
with them, must also be considered.

III. AUTOMATED ANALYSIS

In this section, we present the bug-neighborhood analysis
that, given a program � and a modified version � � of � ,
identifies the null-dereference bugs in � for which fixes
have been attempted in � �, and classifies each attempted fix
as complete or incomplete. The analysis leverages the null-
dereference analysis, implemented in XYLEM [5]. First, we
provide an overview of the XYLEM analysis (Section III-A);
Reference [5] contains details. Then, we present the bug-
neighborhood analysis (Section III-B).

Before presenting the analysis, we present an example
we use to illustrate the XYLEM and the bug-neighborhood
analyses. In Figure 4, the code fragment on the left shows
the original version of function foo(); the fragment on the
right shows a modified version foo’() in which a null check
has been added at line 6.

386

foo(int i, j) { foo’(int i, int j) {
[1] x = null; // NPA [1] x = null; // NPA
[2] if (i == 0) [2] if (i == 0)
[3] x = new C(); [3] x = new C();
[4] y = x; [4] y = x;
[5] if (j > 10) { [5] if (j > 0) {

[6] if (x != null)
[7] x.m1(); // NPR [7] x.m1();
[8] x.m2(); // F-NPR [8] x.m2(); // F-NPR

} else { } else {
[9] if (i == 0) [9] if (i == 0)

[10] y.m(); [10] y.m();
[11] x.m3(); // M-NPR [11] x.m3(); // M-NPR
[12] x.m4(); // M-F-NPR [12] x.m4(); // M-F-NPR

} }
} }

Figure 4. Example to illustrate XYLEM and bug-neighborhhood analyses.

A. Overview of Xylem Analysis

Starting at a statement � that dereferences a variable �, the
XYLEM analysis, traverses backward to identify a path over
which a null value for � can flow to �. During the analysis,
it propagates a set of abstract state predicates backward in
the interprocedural control-flow graph.2 The analysis starts
with a predicate asserting that � is null at �, and updates
states during the path traversal. If the updated state becomes
inconsistent, no null value for � can flow to � along that path.
Thus, the analysis does not traverse further along that path.

Consider the application of the XYLEM analysis for the
dereference of x at line 7 in foo(). The analysis initializes
the state to contain predicate �x � null�. Traversing
backward, the analysis reaches the conditional statement at
line 5 and adds �j � ��� to the state. The statement at
line 4 does not update the state. There are two backward
paths from line 4. Along the path to line 3, the analysis
finds an assignment of a new object to x, which contradicts
the existing predicate �x � null�; therefore, the traversal
along this path stops. Along the other backward path from
line 4, the analysis reaches conditional statement 2 along
its false branch, and adds �i �� �� to the state. Next, the
analysis reaches line 1 where it finds the null assignment to
x, and identifies statement 7 as an NPR.

B. Bug-neighborhood Analysis

Figure 5 presents, BugNeighborhoodAnalysis, the al-
gorithm that performs the bug-neighborhood analysis. The
algorithm inputs an (NPA, NPR) pair, ���� ���, from the
original program � . The algorithm determines whether the
bug fix with respect to ���� ��� has been attempted. If
not, the bug is reported as “unfixed.” If there has been an
attempted fix, the algorithm determines whether the fix is
complete or incomplete in � �, and reports it as “complete”
or “incomplete,” respectively.

The algorithm first (lines 1–2) maps �� and �� to the
respective null-assignment and dereference statements (if

2The control-flow graph (CFG) for a method contains nodes
that represent statements and edges that represent the flow of
control between statements. The interprocedural control-flow graph
(ICFG) contains a CFG for each method in the program.

algorithm BugNeighborhoodAnalysis
input ���� ���: (NPA, NPR) pair in the original program �

output ��������� : �“unfixed”, “complete fix”, “incomplete fix”�
declare 	�
���
������ � : pairs of reaching NPAs for ��

�
(mapped from ��),

reachable NPRs for ��

�
(mapped from ��) in modified program � �

begin
1. ��

�
� matching null-assignment statement in � �

2. ��

�
� matching dereference statement in � �

3. 	�
���
������ � � � // initialization
// check whether ��

�
has reaching NPAs in � �

4. if ��

�
�� ���� then // ��

�
exists in � �

5. ��

�
� NPAs identified by the XYLEM analysis starting at �� �

6. foreach �� � ��

�
do add ���� ��

�
� to 	�
���
������ �

// check whether ��

�
has reachable NPRs in � �

7. if ��

�
�� ���� then // ��

�
exists in � �

8. ��

�����
� dereferences (excluding ��

�
) reachable from ��

�
in � �

9. foreach �� � ��

�����
do

10. ��

�
� NPAs identified by the XYLEM analysis starting at ��

11. if ��

�
� ��

�
then add ���

�
� ��� to 	�
���
������ �

12. foreach (NPA,NPR) � 	�
���
������ � do
find Forward NPRs, Backward NPAs

// set ��������� for ���� ���
13. if ���

�
� ��

�
� � 	�
���
������ � then ��������� � “unfixed”

14. else if 	�
���
������ � � � then ��������� � “complete fix”
15. else ��������� � “incomplete fix”
16. return 	�
���
������ � , ���������

end

Figure 5. Algorithm for the bug-neighborhood analysis.

any) in � �. The computation of this mapping is orthogonal
to our analysis; it can be computed using different analyses
(e.g., [10], [11]), which vary in accuracy and cost. After
computing the mapped statements ��� and ���, the remainder
of the algorithm determines whether an attempted fix has
been applied, and if so, whether the fix is complete.

After initializing ���������	
�		� � (line 3), lines 4–6 of
the algorithm check whether there exist reaching NPAs for
��� in � �. If there exists a matching dereference statement
��� (i.e., ��� is not null), the algorithm performs the XYLEM

analysis, starting at ���, to identify ��

�—the set of reaching
NPAs, (lines 4–5). For all statements 	� in ��

�, it adds
�	�� ��

�� to ���������	
�		� � (line 6).
To illustrate, consider applying the algorithm to (NPA,

NPR) pair (1,7) in function foo(). In foo’(), this NPR has
been fixed by adding the null check in line 6. After matching
the NPR to line 7 in foo’(), the algorithm invokes the
XYLEM analysis, which, because of the added null check,
finds no reaching NPAs. Thus, ��

� is empty in this case.
Lines 7–11 of the algorithm determine whether there

exist reachable NPRs for ���. The algorithm computes, in
two steps, the set of NPRs in � � that can dereference the
null value generated at � �

�
. In the first step, the algorithm

performs a forward reachability analysis, starting at � �
�

, to
identify reachable dereferences of the null value generated
at � �

�
(line 8). In the second step (lines 9–10), for each

dereference identified in the first step, the algorithm uses
the XYLEM analysis to determine whether for a dereference

�, � �

�
is identified as an NPA. If this is the case, the

algorithm adds �����

�� pair to ���������	
�		� � (line 11).

The benefit of the two-step approach is that the second

387

step, using the XYLEM analysis, can potentially filter out
infeasible reachable dereferences that may be identified in
the first step [9]. Line 12 of the algorithm uses similar
backward and forward analysis to find the Forward NPRs
and the Backward NPAs for each pair in ���������	
�		� �,
and adds these pairs to ���������	
�		� � .

Lines 13–15 of the algorithm determine and set the value
of ��������. If ����� �

�

�� is in ���������	
�		� �, then there
is still a flow of a null value from the pair associated
with ���� ���, and thus, the pair has not been fixed. Thus,
the algorithm sets �������� as “unfixed.” Otherwise, if
���������	
�		� � is empty, the algorithm sets ��������

as “complete fix,” else (���������	
�		� � is not empty),
the algorithm sets �������� as “incomplete fix.” Finally,
in line 16, the algorithm returns ���������	
�		� � and
��������.

Consider again the invocation of the algorithm for pair
(1, 7) in foo(). Starting at line 1 (���) in foo’(), the
algorithm performs forward reachability analysis to identify
dereferences 7, 8, 10, 11, and 12. For each of these deref-
erences, the algorithm invokes XYLEM. For dereferences 8,
11, and 12, the XYLEM analysis identifies statement 1 as a
reaching NPA, whereas for dereference 7 and 10, it finds
no reaching NPA. Therefore, at line 13 of the algorithm,
���������	
�		� � � ���� ��� ��� ���� ��� ����: statement 8
is a Forward NPR that has been uncovered by the attempted
fix, statement 11 is an unfixed Maybe NPR, and statement 12
is a Forward NPR associated with statement 11. Thus, a fix
is attempted for pair (1, 7) because the pair does not occur
in ���������	
�		� � . But, the fix is incomplete because
���������	
�		� � is not empty.

IV. EMPIRICAL EVALUATION

To evaluate our approach, we implemented it, and con-
ducted two empirical studies to investigate the occurrences
of bug neighborhoods and the completeness of attempted
bug fixes. After describing the experimental setup (Sec-
tion IV-A), we present the results of the two studies (Sec-
tions IV-B and IV-C). Finally, we discuss threats to the
validity of our empirical evaluation (Section IV-D).

A. Experimental Setup

Our experimental subjects consist of three open-source
projects (Ant-1.6.0, Lucene-2.2.0, and Tomcat-4.1.27)3 and
three proprietary commercial products (referred to as App-
A, App-B, and App-C). Table I lists the subjects, along with
the numbers of classes, methods, bytecode instructions, and
(NPA, NPR) pairs in each subject.

We integrated our analysis into the XYLEM tool. The im-
plementation consists of two main components: the mapping
component and the bug-neighborhood analysis component.
Suppose, for our discussion, that the null-pointer bug in �

is represented by the pair (NPA�, NPR�).

3Available at apache.org

Table I
SUBJECTS USED IN THE EMPIRICAL STUDIES.

Bytecode (NPA, NPR)
Subject Classes Methods Instructions Pairs

Ant-1.6.0 1858 17204 443254 167
Lucene-2.2.0 381 2815 72691 86
Tomcat-4.1.27 260 4077 101075 97
App-A 278 3933 98225 63
App-B 169 1876 46286 119
App-C 2488 13746 340896 107

Table II
EIGHT BUG-NEIGHBORHOOD CATEGORIES FOR AN (NPA, NPR) PAIR.

Maybe NPA Maybe NPR Forward NPR
Category Present Present Present

1 no no no
2 no no yes
3 no yes no
4 no yes yes
5 yes no no
6 yes no yes
7 yes yes no
8 yes yes yes

The mapping component maps statements (bytecode in-
structions) based on their signatures and order of occurrences
in the source code. The result is (1) a mapping between
(NPA�, NPR�) and a pair in � � or (2) an indication that there
is no matched statement in � � for either NPA� or NPR�.

The component for performing the bug-neighborhood
analysis uses the XYLEM analysis to identify the
bug neighborhood for the pair in � � associated with
(NPA�, NPR�). The component implements algorithm
BugNeighborhoodAnalysis (Figure 5), and performs the
appropriate backward and forward analyses to find the
Maybe NPAs, Maybe NPRs, and Forward NPRs associated
with the mapped pair in � �. Currently, the implementation
does not compute Backward NPAs.

Using these NPAs and NPRs in � � and the pair in � �

mapped from (NPA�, NPR�), the implementation creates
new null-pointer bug pairs in � � and adds them to the bug
neighborhhod for the mapped pair in � �. Using the bug
neighborhood for the mapped pair in � �, the implementation
classifies (NPA�, NPR�) as not fixed (i.e., no attempt was
made to fix the bug), attempted but incomplete, or complete.

B. Study 1: Neighborhood Categories and Sizes

1) Goal and Method: The goal of this study is to examine
the consistency and sizes of bug neighborhoods in practice.
To do this, we ran our implementation on each subject
(Table I). For each (NPA, NPR) pair in a subject, we
computed the bug neighborhood and the neighborhood size.

To understand the consistency of bug neighborhoods, we
created a classification that consists of eight categories,
shown in Table II. Each category is defined based on whether
a Maybe NPA, a Maybe NPR, or a Forward NPR is present
in a neighborhood (recall that our current implementation

388

Figure 6. Number of occurrences of bug-neighborhood categories,
aggregated over the subjects. Each bar segment shows the number of (NPA,
NPR) pairs in a bug-neighborhood category that occur in a subject.

does not compute Backward NPAs). For example, Cate-
gory 1 represents the simplest neighborhood, in which no
Maybe NPAs, Maybe NPRs, or Forward NPRs occur. Thus,
for this category, each type of attempted fix shown in
Figure 3 is a complete fix. Category 8 represents the most
complex neighborhoods in which all three of maybe NPAs,
maybe NPRs, and forward NPRs are present.

To present the data on the sizes of the bug neighborhoods,
we created three groups of neighborhood sizes: small (five
or fewer (NPA, NPR) pairs), medium (greater than five but
not greater than 15 (NPA, NPR) pairs), and large (greater
than 15 (NPA, NPR) pairs).

2) Results and Analysis: First, we present the data on oc-
currences and distribution of bug-neighborhood categories.
Then, we present the data on bug-neighborhood sizes.

Figure 6 presents data that show the number of occur-
rences of each neighborhood category, aggregated over the
subjects. The horizontal axis lists the eight categories; the
vertical axis represents the number of (NPA, NPR) pairs
whose neighborhoods are of a particular category. The data
for a category are represented as a segmented bar, in which
the segments represent the number of pairs in each subject;
the height of the bar shows the total number of pairs for the
category. The order of the subjects is the same in all the bars:
Ant is the segment at the bottom, App-C is the segment at
the top. Over all subjects, neighborhood Category 1 occurs
63 times. Of these, 20 occur in Ant, 11 occur in Lucene, and
9 occur in Tomcat; App-A, App-B, and Ant-C contain 3, 6,
and 14 Category 1 neighborhoods, respectively. Category 8
occurs 189 times in total, of which 91 occur in Ant, 26 in
Tomcat, 68 in App-B, and 4 in App-C.

The data illustrate that Category 8 neighborhoods, which
are the most complex neighborhoods, occur most frequently
in our subjects. Category 4, which is also fairly complex
(neighborhoods of this category contain Maybe NPRs and

Forward NPRs), has the second highest occurrence. Another
interesting observation is that neighborhood categories that
have Maybe NPRs but no Forward NPRs (represented as
the sum of Categories 3 and 7) occur often. For such
neighborhoods, a developer can target the NPR and maybe
NPRs in an attempted fix, without being concerned about
whether the fix would unmask forward NPRs.

In Figure 7, we present a different view of the data. The
horizontal axis lists the subjects. For each subject, the chart
contains one bar for each category. The vertical axis, as
in Figure 6, represents the number of (NPA, NPR) pairs
whose bug neighborhoods are of a particular category. The
segments in each bar show the number of pairs that have
small, medium, and large bug neighborhoods.

As the data illustrate, Ant and App-B contain a large
percentage of Category 8 bug neighborhoods: more than
half their (NPA, NPR) pairs have neighborhoods of Cate-
gory 8. Two subjects (Ant and App-C) contain pairs for all
neighborhood categories; all subjects except App-B have at
least seven of the eight categories. App-C has a different
distribution of neighborhood categories from all the other
subjects: most of its (NPA, NPR) pairs belong to Category 7
whereas, in all other subjects, Category 7 is one of the
categories with the fewest (NPA, NPR) pairs.

The data also show a relationship between bug-
neighborhood size and bug-neighborhood categories: all
large neighborhoods occur in the most complex neighbor-
hood categories (Categories 4 and 8). Medium neighbor-
hoods occur in categories that contain Maybe NPAs or
Maybe NPRs (Categories 3 to 8); small neighborhoods are
distributed across all categories. With two exceptions, the
large neighborhoods in our subjects have less than 35 (NPA,
NPR) pairs: Ant has Categroy 8 neighborhoods of size 72
and Lucene has Category 4 neighborhoods of size 46.

Overall, the data indicate that complex bug neighborhoods
can occur frequently in practice and be large in size. There-
fore, an approach, such as ours, that points the developer to
bug-neighborhood statements can be useful in practice as it
provides context information about a bug that can help the
developer ensure that an attempted fix is complete.

C. Study 2: Completeness of Attempted Bug Fixes

1) Goal and Method: The goal of this study is to inves-
tigate the existence and frequency of incomplete fixes. We
considered successive releases of the subjects, and identified
fixes made between each pair of a release and its successive
release. For each � and � �,4 we ran the analysis to compute
the bugs in � for which fixes were attempted in � � and the
classification of each fix as complete or incomplete.

Our mapping component for identifying (NPA, NPR) pair
association in � and � � produces some false positives

4For consistency in terminology, we refer to the releases in a pair as the
original program, denoted by � , and the modified program, denoted by � �.

389

Figure 7. Number of occurrences of bug-neighborhood categories per subject. The bar segments show the number of (NPA, NPR) pairs in a bug-
neighborhood category that have small, medium, and large neighborhoods.

Table III
NUMBER OF INCOMPLETE BUG FIX ATTEMPTS AND THEIR

NEIGHBORHOOD CATEGORIES AND SIZES.

Number of
Incomplete/ Neighborhood Neighborhood
Attempted Categories of Sizes of

Subject Fixes Incomplete Fixes Incomplete Fixes

Ant 4 / 26 2, 4, 4, 5 Small, 3 x Medium
Lucene 3 / 17 4, 4, 4 Small, 2 x Large
Tomcat 0 / 9 — —
App-A 0 / 7 — —

(reported as attempted fixes but not actually attempted).
Because we want to report only precise results, we manually
verified our analysis results for four subjects—Ant, Lucene,
Tomcat, App-A—and removed these false positives. We
report the detailed results for these four subjects.

2) Results and Analysis: Table III illustrates the num-
ber of incomplete and attempted bug fixes and shows the
neighborhood categories and neighborhood sizes of the
incomplete fixes. In Ant, four of 26 attempted bug fixes are
incomplete; in Lucene, three of 17 attempted bug fixes are
incomplete. Five of the seven incomplete fixes belong to Cat-
egory 4, the other two incomplete fixes belong to Category 2
and Category 5. The (NPA, NPR) pairs of the incomplete
fixes have small, medium, and large bug neighborhoods, the
largest neighborhood has size 36. In Tomcat and App-A, all
attempted bug fixes—9 and 7 respectively—are complete.

The data from this study show that, in practice, attempted
bug fixes can be incomplete and, thus, null-pointer bugs
related to the attempted fix of one null-pointer bug can
occur in other executions of the program. Moreover, the bug
neighborhoods of these incomplete fixes can be large and,
therefore, difficult to identify manually. For example, for
two of the incomplete fixes, the bug neighborhoods were
larger than 30. Without automated analysis, determining
whether these additional pairs related to the (NPA, NPR)
exist, and then locating these pairs manually can be a time-

consuming task. Even in the cases where the fix is complete,
the developer may want to know this to avoid searching for
related NPAs and NPRs manually.

D. Threats to Validity

There are several threats to the validity of the evaluation.
Threats to internal validity arise when factors affect the
dependent variables without the researchers’ knowledge. In
our case, our implementation could have flaws that would
affect the accuracy of the results we obtained. We have
used the XYLEM analysis for many experiments and checked
its results manually. Thus, we are confident in the results
it produced. We discovered that, with the mapping we
used in this implementation, our results contained some
false positives. Thus, we verified our results manually, and
reported only those results in Study 2.

Threats to external validity arise when the results of the
experiment cannot be generalized to other situations. One
external threat involves the ability to generalize our results
to other programs. In our study, we used six programs and
thus, we are unable to conclude that our results will hold
in general. However, these programs are used in practice
and are somewhat diverse. Thus, we can conclude that
incomplete fixes for null-pointer bugs do exist in practice,
and that their bug neighborhoods can be significant in size.

Another external threat concerns the ability to generalize
the results for null-pointer exceptions to other types of
bugs that result from incorrect flows of values. We believe
that a similar analysis could provide information for other
related types of bugs. However, only an implementation and
experimentation with such other bugs would confirm our
belief in the applicability of our technique.

V. RELATED WORK

In previous work [9], we presented an approach for
identifying and fixing faults that cause runtime exceptions.
Given a statement at which a null-pointer exception occurs,

390

the approach uses the XYLEM analysis, guided by the stack
trace of the failing execution, to identify definite and possible
NPAs that could have caused the exception. The approach
also identifies maybe NPAs and maybe NPRs that could
cause exceptions in other executions. Unlike our previous
work, in this paper, we investigate how bugs are fixed. We
extend our previous approach to define a bug neighborhood
and characterize the completeness of a bug fix in terms of the
bug neighborhood. We also present analysis that compares
two code versions to identify attempted fixes and classify
each fix as complete or incomplete.

There has been much research on mining bug and source-
code repositories to study the history of bug fixes. Infor-
mation about past bug fixes is used for many applications,
such as assessing and improving the effectiveness of static
bug detection (e.g., [7], [12]), prioritizing warnings (e.g.,
[13], [14]), recommending bug fixes and pertinent software
artifacts (e.g., [15], [16], [17]), assigning defect reports
to developers (e.g., [18]), identifying code changes that
subsequently lead to bug fixes (e.g., [19]), and estimating
the fault-proneness of code components (e.g., [20], [21]). We
discuss a sample of this research that is related to different
aspects of our work.

The main distinguishing aspect of our work from the
previous research is that none of the existing work has
investigated whether bugs fixes are complete and how in-
complete bug fixes could be made complete. Much of this
previous research has focused on the bugs reported in bug
repositories, which are more general than the class of bugs
(involving flows of invalid values) to which our approach is
applicable. Determining completeness for general bugs, such
as those related to application functionality, is not addressed
by our approach.

Ayewah and colleagues [7] investigated, for three software
systems, how the bugs reported by FINDBUGS [22] were
fixed across different builds of the system. They manually
classified the bugs as those that could have little, some,
or substantial functional impact. They also examined the
types of program changes that caused the bugs to be fixed
and determined whether such a change was localized and
intended to remove the bug. However, they did not evaluate
whether a bug fix was complete.

Spacco, Hovemeyer, and Pugh [8] examined the evolution
of bugs over successive builds of Sun’s JDK core runtime
library. They presented two approaches for mapping bugs
from one version to another, and reported trends about defect
lifetimes, decay in defects reported, and defect density over
successive builds. However, they performed no evaluation of
whether the bugs that were removed were completely fixed.

Williams and Hollingsworth [12] developed a checker to
detect bugs where the return value of a function was used
before being tested (e.g., dereferencing a returned pointer
without performing a null check). They also developed a
ranking technique that orders the warnings based on whether

the relevant function was involved in a past bug fix that
added a check on its return value, and how often the return
value of the function is tested before use. In their work, a
notion of completeness similar to ours could be used: if a
bug fix added a check on the return value of a function at one
call site, but not at another call site to the same function, the
fix could be marked incomplete. However, the goal of that
work was not to classify fixes as complete or incomplete.

Existing work on recommending systems performs several
activities: suggests fixes for bugs based on patterns of past
fixes [15]; suggests relevant software artifacts, based on a
memory of the artifacts created during the development of a
software system, that should be examined to perform a task,
such as fixing a bug [16]; or provides context information
for a bug, based on mining information (from different data
repositories) about how similar bugs have been fixed in the
past [17]. Our work is related to such approaches in that it
can be used to recommend parts of the code that should
be examined to ensure that a fix is complete. However,
unlike these techniques, our current approach is not based
on mining information from software repositories but on an
analysis of the code.

Researchers have explored using the history of bug fixes
to prioritize new bugs based on machine learning [13] or
statistical modeling [14]. Our approach could be used to
infer correlations between characteristics of bug neighbor-
hoods and the likelihood of attempted fixes, which could
be used to prioritize a new bug based on its neighborhood
characteristics.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a new approach for automati-
cally identifying incomplete bug fixes in Java programs. We
examined bugs that involve a flow of invalid values causing
a runtime exception. We introduced the concept of a bug
neighborhood that lets us categorize bugs. In addition, a
bug neighborhood also lets us determine the completeness
of attempted bug fixes: if a bug neighborhood is not empty
after an attempted fix, the fix is incomplete.

Our approach can assist debugging in two different
scenarios. During maintenance, our approach can identify
incomplete bug fixes by analyzing two (or more) revisions
of a program. If incomplete fixes are found, developers can
utilize the remaining information in the bug neighborhood
to complete the incomplete fixes. During development, our
approach can check whether incomplete bug neighborhoods
exist before or after developers attempt to fix a bug, and
guide them through the process of completing the fixes.
Thus, our approach can prevent the introduction of incom-
plete fixes into new revisions.

To evaluate our approach we implemented it and con-
ducted two empirical studies on three open source and three
industrial subjects. Our analysis results indicate that, for the

391

subjects considered, large and complex bug neighborhoods
occur frequently, and attempted fixes can be incomplete.

There are several areas of future work; we discuss some
of them here. First, we will address the imprecision of the
mapping component we use to identify the association of the
(NPA, NPR) pairs in � and � �. We will investigate whether
other mapping techniques, such as JDiff [10], can produce
better and more reliable results.

Second, we will gather more analysis results from other
subjects and we will investigate several interesting open
questions: is there a correlation between incomplete bug
fixes and the size of a bug neighborhood? Is there a correla-
tion between incomplete bug fixes and a bug-neighborhood
category? Are incomplete bug fixes in open-source projects
different from incomplete fixes in industrial projects? Do
incomplete fixes occur more frequently in open-source soft-
ware than in industrial projects?

Third, we will investigate other types of bugs that involve
a flow of invalid values that cause a runtime exception.
We will investigate whether there exist well-defined fault
categories and fix categories for these types of bugs, and how
these categories correlate. Our goal is to support developers
further in addressing incomplete bug fixes. For some fault
categories, we may be able to apply the fixes automatically,
for other fault categories, we may be able to recommend
possible fixes to developers or, at least, provide additional
information that helps the developers to fix the bug.

Finally, we will enhance our analysis to guide developers
in addressing an incomplete fix and making it complete. We
will investigate prioritizing (NPA, NPR) pairs using several
approaches, and presenting the neighborhoods using intuitive
visualization techniques. Such techniques may reduce the
manual process in debugging and save time and cost.

ACKNOWLEDGMENT

This work was supported in part by awards from NSF
under CCF-0429117, CCF-0541049, and CCF-0725202, and
IBM by a Software Quality Innovation Faculty Award.

REFERENCES

[1] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B.
Saxe, and R. Stata, “Extended static checking for Java,” in
Proc. of PLDI, Jun. 2002, pp. 234–245.

[2] D. Hovemeyer and W. Pugh, “Finding more null pointer bugs,
but not too many,” in Proc. of PASTE, Jun. 2007, pp. 9–14.

[3] D. Hovemeyer, J. Spacco, and W. Pugh, “Evaluating and
tuning a static analysis to find null pointer bugs,” in Proc.
of PASTE, Sep. 2005, pp. 13–19.

[4] A. Loginov, E. Yahav, S. Chandra, N. Fink, S. Rinetzky, and
M. G. Nanda, “Verifying dereference safety via expanding-
scope analysis,” in Proc. of ISSTA, Jul. 2008, pp. 213–223.

[5] M. G. Nanda and S. Sinha, “Accurate interprocedural null-
dereference analysis for Java,” in Proc. of ICSE, May 2009,
pp. 133–144.

[6] A. Tomb, G. Brat, and W. Visser, “Variably interprocedural
program analysis for runtime error detection,” in Proc. of
ISSTA, Jul. 2007, pp. 97–107.

[7] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou, “Evaluating static analysis defect warnings on
production software,” in Proc. of PASTE, Jun. 2007, pp. 1–8.

[8] J. Spacco, D. Hovemeyer, and W. Pugh, “Tracking defect
warnings across versions,” in Proc. of Intl. Workshop on MSR,
May 2006, pp. 133–136.

[9] S. Sinha, H. Shah, C. Görg, S. Jiang, M. Kim, and M. J.
Harrold, “Fault localization and repair for Java runtime ex-
ceptions,” in Proc. of ISSTA, Jul. 2009, pp. 153–164.

[10] T. Apiwattanapong, A. Orso, and M. J. Harrold, “JDiff: A
differencing technique and tool for object-oriented programs,”
ASE, vol. 14, no. 1, pp. 3–36, Mar. 2007.

[11] S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Au-
gustine, “Dex: A semantic-graph differencing tool for study-
ing changes in large code bases,” in Proc. of ICSM, Sep. 2004,
pp. 188–197.

[12] C. C. Williams and J. K. Hollingsworth, “Automatic mining of
source code repositories to improve bug finding techniques,”
IEEE TSE, vol. 31, no. 6, pp. 466–480, Jun. 2005.

[13] S. Kim and M. Ernst, “Which warnings should I fix first?”
in Proc. of ESEC/FSE, Sep. 2007, pp. 45–54.

[14] J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum,
and G. Rothermel, “Predicting accurate and actionable static
analysis warnings: An experimental approach,” in Proc. of
ICSE, May 2008, pp. 341–350.

[15] S. Kim, K. Pan, and E. J. Whitehead, Jr., “Memories of bug
fixes,” in Proc. of Intl. Symp. on FSE, Nov. 2006, pp. 35–45.

[16] D. Čubranić, G. C. Murphy, J. Singer, and K. S. Booth,
“Hipikat: A project memory for software development,” IEEE
TSE, vol. 31, no. 6, pp. 446–465, Jun. 2005.

[17] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa,
and V. Vangala, “Debugadvisior: A recommender system for
debugging,” in Proc. of ESEC/FSE, Aug. 2009, pp. 373–382.

[18] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?” in Proc. of ICSE, May 2006, pp. 361–370.

[19] S. Kim, T. Zimmermann, K. Pan, and E. J. Whitehead Jr.,
“Automatic identification of bug-introducing changes,” in
Proc. of ASE, Sep. 2006, pp. 81–90.

[20] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting
fault incidence using software change history,” IEEE TSE,
vol. 26, no. 7, pp. 653–661, Jul. 2000.

[21] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting
the location and number of faults in large software systems,”
IEEE TSE, vol. 31, no. 4, pp. 340–355, Apr. 2005.

[22] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM
SIGPLAN Notices (Proceedings of Onward! at OOPSLA
2004), vol. 39, no. 10, pp. 92–106, Dec. 2004.

392

View publication statsView publication stats

https://www.researchgate.net/publication/220719961

