
Testing Diverse Geographical Features of
Autonomous Driving Systems

Seongdeok Seo∗
Hyundai Motors

South Korea
Emille@hyundai.com

Judy Lee∗
ADP

United States
judy.lee@adp.com

Mijung Kim†
UNIST

South Korea
mijungk@unist.ac.kr

Abstract—Testing in various driving scenarios is one of the
essential methods to enhance the reliability of autonomous
driving systems (ADS). Existing ADS testing research has shown
effectiveness in detecting safety violations by generating diverse
driving scenarios. However, they do not consider the various
geographical features and thus have limited ability to find safety
violations caused by complex geographical features. Our paper
addresses this limitation by analyzing a given high-definition
map and collecting its geographical features. We leverage this
information and develop a technique for generating corner case
scenarios that exercise diverse geographical features such as
curves and slopes. Our approach first generates the ego-vehicle’s
driving routes so that they achieve full lane coverage on the
entire map, then clusters those routes by geographical features,
and constructs driving scenarios by adding other objects and
environments. In our experiments on Autoware-Universe, we
evaluate our technique with six high-definition maps from the
Carla simulator. Our results show that driving scenarios gener-
ated by our tool effectively exercise more diverse geographical
features than existing work. As a result, our tool uncovers new
safety violations that are caused by complex geographical features
and would not be detected by existing work.

Index Terms—Testing Autonomous Driving System, Au-
tonomous Driving Scenario Generation, Model-based Scenario
Generation

I. INTRODUCTION

Recent tests of self-driving cars have faced significant chal-
lenges, including traffic congestion from stuck vehicles [1]–
[5] and collisions [6], [7] leading to operational restrictions.
Autonomous vehicles experience twice as many accidents
per mile as conventional cars, causing 93% of Americans to
express safety concerns [8]. Consequently, testing autonomous
systems in diverse settings is essential to identify and address
safety issues, enhancing overall road safety.

When testing autonomous driving systems, exploring vari-
ous road features is essential. Roads with vertical variables,
such as slopes, and roads with curves require precise steering
control and thus strongly correlate with accident risks [10]–
[12]. Different road types, such as highways and general
roads, also affect accident risks [10]–[12]. Therefore, including
these geographical features in testing scenarios is crucial.
Real-world maps are usually complex, featuring various in-
tersections and highly unpredictable elements [13]. Recent

∗ This work was done when Seongdeok Seo and Judy Lee were at UNIST.
† Corresponding author

Fig. 1: An example of complex junctions that autonomous
driving systems fail to navigate [9]

investigations reveal that autonomous vehicles often fail to
navigate complex junctions [9], as illustrated in Fig. 1. Thus,
considering geographical features is essential for ensuring the
high reliability of autonomous driving systems.

Virtual simulation testing has emerged as a crucial method
for verifying autonomous driving systems, offering controlled,
modifiable, and reusable scenarios without incurring finan-
cial or physical risks. This approach allows for handling
a large number of scenarios without the need for physical
hardware [14]. Various techniques have been developed for
testing autonomous driving systems in virtual simulation.
These techniques can be categorized into two groups based
on the outputs they generate: (i) scenario-generation approach
and (ii) map-generation approach.

The scenario-generation approach [15]–[36] automatically
generates autonomous driving scenarios on given maps. While
scenarios generated by these scenario-generation techniques
are effective in uncovering safety violations, caused by other
vehicles, obstacles, or environmental variables, they often
overlook violations arising from geographical features. Such
features can introduce significant complexity and confusion
on roads, leading to potential safety hazards. Prior scenario-
generation research has not adequately addressed these factors,
largely due to a lack of criteria for identifying geographical
features along driving routes and the difficulty in achieving
lane coverage when generating routes for the ego vehicle. Ad-
ditionally, geographical features that contribute to violations
are rare, further complicating their identification and analysis.

The map-generation approach [37]–[44] focuses on creating
maps with newly generated road structures, such as merging
lanes and curved roads. While these techniques are useful for
testing various geographical features, they are limited in their
ability to accurately represent complex real-world geographi-
cal characteristics, such as elevation changes and distinctions
between highways and regular roads. Moreover, because these
techniques produce artificially generated maps as outputs, they
may not be as effective for testing geographical features within
simulated environments typically converted from real-world
maps. The ability to handle real-world maps is crucial for
testing autonomous driving systems, as these maps often con-
tain complex and unpredictable elements [13] that autonomous
systems must be capable of navigating. Unfortunately, the
map-generation approach may fall short of fully representing
and testing the complex geographical features found in real-
world environments.

In this paper, to address these challenges from the scenario-
generation and map-generation approaches, we aim to test
diverse geographical features by generating scenarios that
thoroughly exercise geographical features on a given map.
Our work is based on two key insights. First, it is crucial
to generate driving scenarios that encompass all roads on a
given map, ensuring that no geographical features are over-
looked. Second, to effectively test driving routes with diverse
geographical features, it is essential to analyze and classify the
geographical characteristics of the roads within each route.

Based on these insights, we propose MAPSCE-GEN,
a model-based scenario-generation technique for detecting
safety violations specifically caused by geographical features
within the given map. Unlike previous scenario-generation
approaches [15]–[36], which primarily address safety viola-
tions from other sources, our focus is specifically on those
arising from geographical features. MAPSCE-GEN constructs
a data structure called the route dictionary, which classifies
extracted driving routes from the map into their geographical
characteristics. This classification enables the generation of
driving scenarios tailored to specific geographical features,
facilitating the detection of challenging corner-case scenarios.
Unlike map-generation approaches [37]–[44], which focus on
directly creating road structures, MAPSCE-GEN identifies and
utilizes existing geographical features within a given map
to generate scenarios that thoroughly exercise those features.
Additionally, MAPSCE-GEN considers diverse geographical
features such as speed limits and elevation, which have not
been addressed by previous techniques [37]–[44].

We demonstrate the effectiveness of MAPSCE-GEN using
Autoware-Universe [45], an industrial-grade autonomous driv-
ing system platform, in conjunction with the CARLA simu-
lator [46]. The experimental results show that MAPSCE-GEN
can utilize all roads in given maps to generate driving routes
and identify safety violations caused by previously overlooked
geographical features. Additionally, our findings indicate that
MAPSCE-GEN outperforms existing methods [34]–[36] in
generating corner cases related to geographical features and
significantly improves lane coverage compared to existing

methods. The new routes generated by MAPSCE-GEN have
a violation rate approximately 2.63 times higher than those
identified by existing methods [34]–[36]. Furthermore, our ap-
proach effectively covers a wide range of road characteristics.

In summary, the contributions of this paper are as follows:
• MAPSCE-GEN ensures comprehensive coverage of all

lanes within the provided high-definition map. By gener-
ating driving routes for every road present on the map,
the tool ensures that no geographical feature or lane is
overlooked during scenario generation.

• MAPSCE-GEN constructs a data structure for route clas-
sification which provides a method to organize driving
routes based on their geographical features. This fa-
cilitates the analysis of driving scenarios with diverse
geographical characteristics, aiding in the discovery of
challenging corner cases.

• We implement MAPSCE-GEN and demonstrate its ef-
fectiveness on the Autoware-Universe platform using
the CARLA simulator. This implementation provides a
practical solution for detecting safety violations caused
by geographical features. The implementation details, as
well as our source code, are available on our website:
https://sites.google.com/view/mapsce-gen

II. BACKGROUND

A. Autonomous Driving Scenarios

Given that driving scenarios—serving as test inputs in
simulation testing—involve numerous parameters, it is crucial
to determine how to construct them and which parameters to
prioritize. The scenario layer model [47] has been proposed
to represent the structure of driving scenarios. According to
this model, an autonomous driving scenario comprises three
layers: geographical layer, object layer, and environment layer.

Geographical Layer contains parameters related to the ge-
ographical scope of the high-definition map where the driving
scenarios are executed. It represents both the features and the
state of roads, including road-level details, traffic infrastruc-
ture, and temporary manipulations of road-level and traffic
infrastructure. During scenario generation, the parameters in
the geographical layer are determined by the driving route
of the ego-vehicle. Object Layer represents other vehicles,
obstacles, or pedestrians in driving scenarios, while Environ-
ment Layer encompasses external environmental factors such
as road friction and weather conditions.

B. Scenario-generation Approach

The scenario-generation approach can be categorized into
two groups based on how seed scenarios are prepared: (i) man-
ually crafted seeds [15]–[31] and (ii) automatically generated
seeds [32]–[36].

The scenario-generation approach with manually crafted
seeds [15]–[31] involves incrementally modifying existing
driving scenarios to detect safety violations. Most utilize
mutation-based fuzzing, a feedback-driven approach that mu-
tates manually crafted scenarios to generate those violating
predefined safety requirements. While effective in identifying

https://sites.google.com/view/mapsce-gen

R
o
u
te
 G
e
n
e
ra
ti
o
n

OpenDRIVE

S
Driving
Scenarios

MapSce-Gen

Route Dictionary

...

...

HD-Map

...

R
...

R
o
u
te
 C
la
ss
if
ic
a
ti
o
n

Ego-Vehicle’s
Routes

Road Graph
R
o
a
d
 G
ra
p
h
 C
o
n
st
ru
ct
io
n

S
ce
n
a
ri
o
 C
o
n
st
ru
ct
io
n

Fig. 2: Overview of our approach, MAPSCE-GEN

potential vulnerabilities, these generated scenarios often lack
diversity in the geographical layer due to the similarity in
geographical features between seed scenarios and mutated
scenarios. This limitation affects the robustness and adapt-
ability evaluation of autonomous driving systems, potentially
impeding the detection of safety violations associated with
various geographical features.

To address the limitations of manually crafted seeds and
increase the variety of driving routes, techniques for automatic
seed generation [32]–[36] have been proposed. These methods
utilize automated input generation to construct driving routes
without manual crafting, aiming to enhance the diversity of
generated scenarios. However, these existing studies primarily
focus on identifying safety violations caused by the object
layer and do not address safety violations resulting from the
geographical layer. Furthermore, they often fail to cover all
lanes on the entire map and struggle to incorporate diverse
geographical features, which are essential for identifying cor-
ner case scenarios causing safety violations.

C. Map-generation Approach
To test the geographical layer, some studies directly con-

struct an artificial one. The map-generation approach is specif-
ically designed to generate maps or road structures [37]–[44].
These tools construct challenging road networks and focus
on predicting whether a particular road structure may cause
safety violations. These studies have made significant efforts
to generate complex road networks, which can be utilized to
identify various safety violations, including lane invasions.

However, most existing approaches focus only on 2D ge-
ographical features, such as road curvature [37]–[42] or lane
changes (e.g, merge, split, etc.) [43], while neglecting other
types of geographical features commonly found in real-world
scenarios, like elevation, the number of connected lanes, and
speed limits, which are specified in high-definition maps.

Due to significant demands for testing autonomous driving
systems on real-world roads in industry, real-world maps are
often converted into simulation-compatible formats, such as
OpenStreetMap [48]. Consequently, it becomes necessary to
test autonomous driving systems on given maps rather than

artificially generated ones. Given this context, it is also essen-
tial to adopt an approach that explores possible driving routes
within a given map to generate various driving scenarios.

III. APPROACH OVERVIEW

Our approach called MAPSCE-GEN is a map-aware scenario
generation technique designed for testing diverse geographical
features of autonomous driving systems. Fig. 2 presents the
overview of the workflow employed by MAPSCE-GEN. It con-
sists of 4 phases: road graph construction, ego vehicle’s route
generation, route classification, and scenario construction.

First, our approach constructs a road graph (Section IV-A),
which is a data structure designed to represent connections
between roads and junctions in the given high-definition map.
The road graph contains essential map information such as the
connectivity information between lanes and the geographical
features of roads. This component serves as the input for
MAPSCE-GEN’s route generation (Section IV-B) and route
classification (Section IV-C) components. Next, our approach
generates driving routes based on their geographical features.
Unlike previous work that solely considers only roads con-
nected to a junction [34]–[36], our approach extends driving
routes by leveraging the road-tracking methods to track the
full route. Our approach then takes the ego vehicle’s routes
that are generated in the previous step, categorizes them
based on their geographical characteristics, and creates a
route dictionary (Section IV-C2). The dictionary has unique
keys representing geographical features and stores as values
the driving routes exercising the corresponding geographical
features. Here, route keys are systematically computed using
comprehensive route information such as roads and their
geographical features (e.g., curvature, elevation, etc.). Finally,
in the scenario construction step (Section IV-D), MAPSCE-
GEN utilizes the geographically diverse routes selected from
the route dictionary and constructs complete driving scenarios
by adding the object layer and environment layer. This process
involves generating NPC vehicles that perform legal driving
behaviors, akin to existing work [34], [35]. It also integrates
environmental elements such as weather conditions and road
friction, thereby generating realistic driving scenarios.

IV. MAPSCE-GEN

In this section, we discuss how MAPSCE-GEN generates
driving scenarios that exercise diverse geographical features.

A. Road Graph Construction

Our approach first constructs Road Graph, that represents
connections of roads and junctions of a given high-definition
map. The primary aim of the road graph is to develop a
data structure facilitating the easy storage and management
of essential information extracted from high-definition maps,
thereby organizing and managing map data effectively to
enable accurate and efficient utilization of map information. In
this paper, precise map data in the ASAM OpenDRIVE format
[49] serves as the input, transformed into the road graph object.
Processing OpenDRIVE is cost-effective because the file size
is much smaller than the lanelet format [50]. OpenDRIVE,
a standard format for representing high-definition map data,
enhances the organization and management of data when
converted into the road graph data structure. The developed
road graph data structure takes the form of a directed graph.

The road graph consists of nodes representing lanes and
directed edges indicating connections between lanes. This
structure is ideal for representing the layout and connectivity
of roads, enabling the depiction of the road network’s structure
and navigation routes between lanes. Edges within the road
graph are arranged in a successor-predecessor format, with re-
lationships defined based on lane directionality. This arrange-
ment facilitates tracking lane traversal within the road graph.
The detailed contents of the road graph are implemented
using internal classes, with concepts such as lanes, roads,
and junctions each represented as individual classes. Their
relationships are established through a parent-child structure,
defining that lanes are part of roads, and roads are components
of junctions, thereby maintaining a hierarchical representation
of data. These dependencies adhere to OpenDRIVE format,
the standard of high-definition maps.

Algorithm 1 presents the process of generating the road
graph. The algorithm uses a string, hd map str, representing
the high-definition map as input. The output comprises two
dictionaries: the Road Dictionary R and the Junction Dictio-
nary J. R maps road identifiers to their corresponding road
information, while J maps junction identifiers to the associated
junction data. Initially, both dictionaries are empty (Line 1–2).
The algorithm then enters a junction analysis phase, iterating
over all junctions in the high-definition map (Lines 3–9). For
each junction j, the algorithm creates a set c road to store
the identifiers of roads incoming to the junction (Lines 5–
7). This set is used to create a Junction object, which is
added to J with j’s identifier as the key. Following this,
the algorithm begins a road analysis phase, iterating over all
roads in the high-definition map. For each road r, a dictionary
lane dict is constructed to store the lanes belonging to the
road (Lines 10–21). The algorithm also retrieves the link and
road length information about the road (Lines 12–14). For
each lane section in r, a lane classification process updates
lane dict. Using this data, a new road object is created. If

Algorithm 1: ROADGRAPH CONSTRUCTION

Input: hd map str String of high-definition map
Output: ROADGRAPH

1: R← dict()
2: J← dict()

// Junction Analysis

3: for all j in hd map str.findall(“junction”) do
4: c road← set()
5: for all c in j.findall(“connection”) do
6: c road.add(c.get(“incomingRoad”))
7: end for
8: J[j.get(“id”)]← Junc(j.get(“id”), c road)
9: end for

// Road Analysis

10: for all r in hd map str.findall(“road”) do
11: lane dict← extract lanes(r)
12: link ← r.find(“link”)
13: road length← r.get(“length”)
14: new road← Road(lane dict, link, road length)
15: CALCUALTECHARACTERISTICS(new road)
16: if r.get(“junction”) == “-1” then
17: R[r.get(“id”)]← new road
18: else
19: J[r.get(“junction”)]← new road
20: end if
21: end for
22: return ROADGRAPH(R, J)

r’s junction value is ”-1,” it means that this road is not part
of any junction. In such cases, the new road is added to R
(Lines 16–17). Conversely, if the junction value is not ”-1,”
then the new road is added to J with the junction value as
the key (Lines 18–19). Finally, the dictionaries R and J, which
comprehensively map the road and junction data of the high-
definition map, are returned as output of Algorithm 1.

B. Route Generation

The route generation aims to create extended driving routes
that were missed by existing work [34]–[36]. Specifically,
extended routes generated by MAPSCE-GEN can handle routes
like those illustrated in Fig. 3, where existing approaches
fail to cover roads not directly linked to junctions. In the
syntax supported by OpenDRIVE [49], it is possible to connect
single roads, which commonly exist in high-definition maps.
However, existing approaches [34]–[36] do not consider such
high-definition map grammar. This leads to gaps in achieving
full lane coverage within the map. With the road graph,
representing all connection information in the map, MAPSCE-
GEN extends connected single roads to generate driving routes
that achieve 100% lane coverage using road-tracking.

In contrast to prior work [34]–[36] that can only handle
roads directly connected to junctions, our approach leverages
the method of road-tracking to track full routes. It creates
driving routes that traverse a single junction and yet utilize all

Fig. 3: Examples of complex lanes that are not handled in
existing work

individually connected roads. This approach improves the lane
coverage of the entire map and provides an advantage in di-
versifying ego-vehicle’s driving routes. As a result, MAPSCE-
GEN helps test a broader area in the map.

Our approach generates the driving route for all junction
lanes by covering every lane in the map. Fig. 4 visually
represents the full-route generation process, illustrating how
routes are expanded. Previous work [34]–[36], which limits
route generation to roads directly connected to junctions,
presents a significant drawback by omitting lanes not covered.
To address this limitation, our methodology aims to overcome
the challenge by extending routes beyond those exclusively
associated with junctions. This approach ensures a more com-
prehensive coverage of lanes in the map, thereby enhancing
the overall effectiveness of the route generation process.

(a) Driving route generated in ex-
isting work

(b) Extended driving route gener-
ated by MAPSCE-GEN

Fig. 4: Route extension by our road-tracking method

In Algorithm 2, we explain the process of generating a full
route for the ego-vehicle. To create driving routes for the ego-
vehicle, MAPSCE-GEN gathers information about the lanes
from the road graph. By leveraging Junction Dictionary J of
the road graph, MAPSCE-GEN locates all lanes within each
junction and their connection information. For each junction
lane l, we define lpred and lsucc as the predecessor and
successor lanes of l, respectively. Starting with lpred and lsucc,
the algorithm creates two lists, Lpred and Lsucc, respectively
(Lines 4–5). The algorithm continues adding predecessors to
Lpred until the type of the first lane is not a junction (Lines
8–11). Similarly, the algorithm continues adding successors to
Lsucc until the type of the last lane is not a junction (Lines

12–15). Finally, the algorithm concatenate Lpred, l, and Lsucc

to form a route R.

Algorithm 2: ROUTE GENERATION

Input: ROADGRAPH
Output: ROUTEDICTIONARY

1: for each junction j in J of ROADGRAPH do
2: for each road r in j do
3: for each lane l in r do
4: Lpred ← list()
5: Lsucc ← list()
6: lpred ← Predecessor of l
7: lsucc ← Successor of l

// Tracking roads to find full-route

8: while type of lpred is not ”junction” do
9: Lpred.add(lpred)

10: lpred ← Predecessor of lpred
11: end while
12: while type of lsucc is not ”junction” do
13: Lsucc.add(lsucc)
14: lsucc ← Predecessor of lsucc
15: end while
16: R← Lpred + [l] + Lsucc

17: KeyR ← CALCULATEROUTEKEY(R)
18: ROUTEDICTIONARY(KeyR)← R
19: end for
20: end for
21: end for
22: return ROUTEDICTIONARY

C. Route Classification

To uncover safety violations caused by the geographical
layer, it is essential to create geographically complex routes for
the ego-vehicle’s driving paths. To identify such routes, they
must be distinguished based on their geographical features.

Unlike previous methodologies that only consider the geo-
graphical features of junctions [34]–[36], our approach dis-
tinguishes driving routes by considering the geographical
features of not only the junction but also the predecessor and
successor roads associated with the driving route. Furthermore,
our approach does not rely on categorizing junctions into
manually predefined classes such as T-shaped junction and Y-
shaped junction. Instead, MAPSCE-GEN performs comprehen-
sive classification by representing each distinguishing feature.

In contrast to existing work [32]–[36], our route classifica-
tion approach selects ego-vehicle driving routes based on the
geographical features of all lanes in the route. The existing
work, as depicted in Fig. 5, tends to classify the two routes
shown in the figure as identical. However, roads connected
to actual junctions can exhibit significantly different features.
For instance, the successor road of Fig. 5a is the straight lane,
while the successor road of Fig. 5b is the left-curved lane. This
limitation in the existing work highlights challenges in finding
geographically complex routes. Specifically, the oversimplified

(a) Successor road is straight. (b) Successor road is left-curved.

Fig. 5: Two routes classified identically in existing work, but
differently in our approach

classification of routes as identical overlooks the geographical
features associated with roads connected to junctions.

1) Geographical Features: The geographical features, such
as differences in curvature, elevation, speed limit, and the num-
ber of connected lanes or roads, are crucial factors contributing
to the uniqueness of each ego-vehicle driving route. In line
15 of Algorithm 1, three analyses are conducted to classify
routes based on lane characteristics (curvature, elevation,
speed, and interactability). MAPSCE-GEN represents these
geographical features in binary codes as shown in Table I.
Each geographical feature is used to classify driving routes.

TABLE I: Binary code of each geographical feature. Numbers
in parenthesis indicate binary code of CHspeed.

00 (0) 01 (1) 10 11

CHcurv STRAIGHT LEFT RIGHT COMPLEX
CHelev FLAT DOWNHILL UPHILL COMPLEX
CHspeed NORMAL HIGH - -

• Curvature

To analyze the curvature, CHcurv , MAPSCE-GEN collects
the curvature (curv) of an “arc” in the “geometry” element
found in the “planView” of a road from a high-definition
map. In Eq. (1), we formulate the criteria for classifying
CHcurv of lanes. Initially, the CHcurv of the road is set
as STRAIGHT. This state is updated based on the value of
curv: if curv > 0.02, indicating a left curvature, CHcurv is
set to LEFT CURV. However, if curv < −0.02, indicating
a right curvature, CHcurv is set to RIGHT CURV. If both
left and right curvatures are detected, CHcurv is set to
COMPLEX CURV.

CHcurv =

11 if ∃curv > 0.02 and ∃curv < −0.02
01 elif ∀curv > 0.02

10 elif ∀curv < −0.02
00 otherwise

(1)

The curvature state CHcurv provides a simple categoriza-
tion of the road’s curvature into either straight (00), left curve
(01), right curve (10), or complex curve (11).

• Elevation
To identify unevenness and vertical undulations, MAPSCE-

GEN analyzes the road’s elevation, denoted as CHelev. This
classification helps comprehend the necessary topographical
features for testing. Following OpenDrive syntax, a, b, c,
and d represent the elevation parameters of a road. A list
of elevations, referred to as elist, is formed by summing
these parameters for each elevation element ei in the elevation
profile, calculated as ei = a + b + c + d. Initially, the
road’s elevation state, represented by CHelev, is designated as
”FLAT”. This designation evolves based on the values in elist.
If the maximum or minimum value in the list is non-zero and
the difference z between the maximum and minimum values
exceeds 3, CHelev is updated as follows:

CHelev =

01 if z > 3 and elist = descending order
10 if z > 3 and elist = ascending order
11 if z > 3 and elist = unsorted
00 otherwise

(2)
This elevation characteristic, CHelev, provides a simple

categorization of the road’s elevation into either flat (00),
downhill (01), uphill (10), or complex hill (11).

• Speed Limit
The speed of lane characteristics is denoted by s, represent-

ing the maximum speed limit for the road obtained from the
road’s “type” attribute. Initially, the speed state of the road,
denoted by CHspeed, is set as NORMAL SPEED. However,
if s exceeds the threshold of 60, the speed state S is updated
to HIGH SPEED as follows:

CHspeed =

{
0 if s ≥ 60

1 otherwise
(3)

This speed state S provides a categorization of the road’s
speed limit into either normal (0) or high (1). Using this
feature, we can distinguish whether a lane is a highway or
a regular road. Therefore, CHspeed characteristic does not
require execution of the ego-vehicle.

• Interactability
Finally, MAPSCE-GEN calculates the interactability,

CHinteract, to assess the complexity of the lane. In Eq. (4), we
formulate the criteria for classifying CHinteract of lanes. For a
single road, MAPSCE-GEN determines the number of lanes Nl

contained within it, while for a junction road, MAPSCE-GEN
ascertains the number of connected roads Nc. This feature is
crucial as it indicates the potential degree of lane-changing
actions that a vehicle can undertake. Additionally, the number
of lanes is significant as it also reflects the potential degree
of lane-changing actions. Moreover, the number of connected
roads aids in understanding the characteristics of the junction.

CHinteract =

{
Nc ← # of connected roads if lane ∈ J
Nl ← # of lanes in road otherwise

(4)
For the interactability characteristic, 3 bits are allocated to

represent the number of interactable roads or lanes, with a
maximum value limited to 7.

2) Route Dictionary: The route dictionary categorizes all
routes based on their geographical features. Each route gen-
erated in the high-definition map is assigned a corresponding
KeyR. In Algorithm 2, the function CALCULATEROUTEKEY
is used at line 17 to compute the route key, denoted as KeyR.
This process involves converting various characteristics into
binary codes, which are essential components in calculating
the 24-bit binary route key. KeyR is structured so that each
bit corresponds to specific information, as illustrated in Fig. 6.

6 2 2 3 8 1

0110	0010 0010	0011 1000	0001

CHcurv
CHelev
CHspeed
CHinteract

CHcurv
CHinteract

Predecessor road data Junction road data

Successor road data

Fig. 6: Structure of a route key

As shown in Fig. 6, the first 8 bits and the last 8 bits
collectively represent the geographical features of predecessor
lanes and successor lanes, which are not considered in existing
scenario generation approaches [32]–[36]. Meanwhile, the
middle 8 bits capture the characteristics of the junction lane
traversed by the ego-vehicle. In driving routes where multiple
lanes are connected to one, individual features are combined
using the logical OR operation. For example, the operation
LEFT CURV + RIGHT CURV results in COMPLEX CURV
through the logical OR of “01” OR “10” = “11”. Through this
logical combination of various characteristics and geographical
features when calculating the route key, every route aligns with
its unique KeyR, which enables systematic and comprehensive
classification of routes.

Once route keys are computed, MAPSCE-GEN classifies
those routes generated in the route generation step into the
corresponding route key. After this classification, the route
dictionary contains a set of route keys and for each key, it
contains a list of routes associated with the key as values.

D. Scenario Construction

In this step, MAPSCE-GEN first selects a route key from the
route dictionary using a roulette wheel selection algorithm [51]
to enhance the diversity of selected routes. The roulette wheel
selection algorithm is implemented to prioritize routes with
fewer occurrences in the route dictionary by assigning them

higher priority. Therefore, this contributes to testing various
geographical features. MAPSCE-GEN then retrieves the list of
routes associated with the selected key.

After selecting an ego-vehicle’s route, MAPSCE-GEN gen-
erates the object layer and environment layer to create com-
plete and realistic scenarios. When MAPSCE-GEN generates
NPC vehicles, their starting points are selected based on the
coordinates around the selected route, and NPCs’ driving is
executed using CARLA’s autopilot. The number of NPCs
is determined by calculating the total road length of the
selected route divided by 20. Then, the environment layer,
encompassing weather conditions, road friction, and other
environmental elements, is randomly generated.

V. EVALUATION

In this section, we utilize MAPSCE-GEN to generate ge-
ographically complex scenarios that cause safety violations
due to geographical features. To evaluate the efficiency and
effectiveness of MAPSCE-GEN, we investigate the following
research questions.

• RQ1: Can MAPSCE-GEN achieve full lane coverage on
high-definition maps?

• RQ2: How effective is MAPSCE-GEN in exercising di-
verse geographical features?

• RQ3: How effective are the scenarios generated by
MAPSCE-GEN in detecting safety violations caused by
geographical features?

A. Experimental Setup

We conduct the experiments on Ubuntu 20.04 with 32 GB
memory, an Intel Core i9 CPU, and an NVIDIA RTX 3080
TI. We use CARLA simulator [46] version 0.9.13 to sim-
ulate autonomous driving scenarios and Autoware-Universe
[45], representing a full-fledged Level 4 automation as the
autonomous driving system. The system is integrated with the
CARLA simulator, providing a robust platform for conducting
comprehensive autonomous vehicle testing.

In the evaluation, we utilize 7 high-definition maps: 6 are
defaults in the CARLA simulator [46], and 1 is provided as de-
fault in the LGSVL simulator [52]. For RQ3, we refrain from
comparing MAPSCE-GEN against certain approaches. This de-
cision stems from the fact that the research problem addressed
by MAPSCE-GEN differs from that of existing approaches,
rendering direct comparison impractical. For instance, studies
such as [37]–[44] primarily focus on generating maps or road
structures themselves. As such, there is no existing generation-
based testing approach specifically targeting safety violations
caused by geographical features, including [15]–[36].

Safety violations arising from geographical features can be
broadly classified into two types: lane invasion and stuck.
The lane invasion detector which is provided by CARLA
[53] is set on the ego-vehicle to monitor safety violations of
the autonomous driving system. We develop a stuck detector
that detects situations where there is no change in the control
values of the ego-vehicle for 5 minutes and no objects within
a radius of 10 meters. Additionally, the driving scenario in

TABLE II: Results of RQ1: Lane coverage compared with a baseline called DLINK that implements the route generation
method used in existing work [34]–[36]

DLINK MAPSCE-GEN

HD-Map Lane Cov. # Miss. / # Total. len(Miss.) Lane Cov. # Miss. / # Total. len(Miss.)

San Francisco 100% 0 / 768 0m 100% 0 / 768 0m
Town01 90.32% 12 / 124 1364.91m 100% 0 / 124 0m
Town02 88.63% 10 / 88 483.78m 100% 0 / 88 0m
Town03 96.7% 13 / 396 108.02m 100% 0 / 396 0m
Town04 97.8% 10 / 454 573.67m 100% 0 / 454 0m
Town05 97.5% 12 / 486 1806.80m 100% 0 /486 0m

Town10HD 88.1% 20 / 168 713.54m 100% 0 / 168 0m

Total 96.9% 77 / 2484 5050.72m 100% 0 / 2484 0m

which a stuck situation occurred is executed once more to
verify if it is consistently reproducible.

B. RQ1: Lane Coverage

In this section, we address RQ1, which investigates the
effectiveness of our approach in covering lanes on the high-
definition map. Higher lane coverage does not always lead to
greater road diversity. However, achieving high lane coverage
is essential for achieving diversity because if some lanes are
not covered at all, we may lose a chance to exercise potential
new geographical features that exist only in those uncovered
lanes. This may result in reducing diversity.

We conduct experiments comparing MAPSCE-GEN with a
baseline named DLINK, in which we implement the route gen-
eration method used in existing work [34]–[36]. This existing
route generation method selects a junction and connects only
the roads directly linked to it.

The evaluation metric used for RQ1 is Lane Coverage,
calculated as the percentage of lanes covered by the generated
routes out of the total number of lanes in the high-definition
map. This metric offers a quantitative measure of how thor-
oughly each approach explores the lane network. The term #
Miss. indicates the number of lanes not covered by the gener-
ated routes, highlighting instances where the method falls short
in exploring specific lanes. The metric len(Miss.) represents
the cumulative length of all the uncovered lanes, providing
insights into the spatial extent of the missed coverage. This
comparative analysis enables us to quantitatively measure and
compare the effectiveness of MAPSCE-GEN against DLINK.

The experimental results confirm MAPSCE-GEN’s effi-
cacy in achieving comprehensive lane coverage across high-
definition maps (HD-Maps). Our method consistently covers
all lanes in every evaluated scenario, demonstrating its capac-
ity to generate routes traversing the entire lane network. To
quantify this improvement, we compare our lane coverage with
the baseline, DLINK, as summarized in Table II. In Table II,
the lengths of the missing lanes in scenarios where DLINK
falls short are highlighted. For instance, in Town05, DLINK
misses 12 lanes covering a total length of 1806.80m. In con-
trast, MAPSCE-GEN achieves complete coverage, eliminating
the occurrence of missing lanes. Therefore, we experimentally

demonstrate the ability to cover all lanes by applying route
generation, ensuring coverage of every lane in the map.

Overall, the experimental results substantiate MAPSCE-
GEN’s effectiveness in covering the map, surpassing the capa-
bilities of existing methods. The ability to cover approximately
5050.72m of previously inaccessible lanes demonstrates the
significant improvement brought by MAPSCE-GEN. This en-
hancement is particularly evident in generating geographically
complex scenarios, as can be seen in the following RQs.

Answer to RQ1: MAPSCE-GEN achieves comprehen-
sive coverage of all lanes, including approximately
5050.72m of previously inaccessible lanes.

C. RQ2: Road Characteristics Coverage

For RQ2, we undertake a systematic approach. We consec-
utively select 100 driving scenarios and compute the coverage
increase rate. To ensure statistical robustness, we repeat this
process 100 times, calculating the average coverage increase
rate. This iterative methodology ensures a more precise evalu-
ation of how effectively each scenario generation and selection
method covers diverse road characteristics across the map.

In this experiment, we compare MAPSCE-GEN’s effec-
tiveness in generating geographically complex scenarios with
two baselines: RANDOM and CROUTE [36]. RANDOM
and CROUTE utilize a DLINK method for route generation.
Regarding scenario selection, RANDOM randomly selects one
scenario from all possibilities, while CROUTE chooses from
classes classified solely based on junction lane characteristics.
The evaluation utilizes the Road Characteristics Coverage
metric, which measures the coverage of diverse road charac-
teristics across the map. This metric indicates the percentage
of covered characteristics among all lanes in the map.

The Road Characteristics Coverage graphs for Town01 and
Town02, depicted in Fig. 7a and Fig. 7b respectively, illustrate
the effectiveness of scenario generation methods in cover-
ing diverse road characteristics. These maps, with relatively
fewer diverse road characteristics, require a lower number
of driving scenarios to achieve 100% coverage. However,
existing methods such as RANDOM and CROUTE fail to

of scenarios

C
ov

er
ag

e

50%

60%

70%

80%

90%

100%

0 25 50 75 100

RANDOM CROUTE MapSce-Gen

(a) Town01

of scenarios

C
ov

er
ag

e

50%

60%

70%

80%

90%

100%

0 25 50 75 100

RANDOM CROUTE MapSce-Gen

(b) Town02

of scenarios

C
ov

er
ag

e

50%

60%

70%

80%

90%

100%

0 25 50 75 100

RANDOM CROUTE MapSce-Gen

(c) Town03

of scenarios

C
ov

er
ag

e

50%

60%

70%

80%

90%

100%

0 25 50 75 100

RANDOM CROUTE MapSce-Gen

(d) Town04

of scenarios

C
ov

er
ag

e

50%

60%

70%

80%

90%

100%

0 25 50 75 100

RANDOM CROUTE MapSce-Gen

(e) Town05

of scenarios

C
ov

er
ag

e

50%

60%

70%

80%

90%

100%

0 25 50 75 100

RANDOM CROUTE MapSce-Gen

(f) Town10HD

Fig. 7: Results of RQ2: road characteristics coverage

reach full coverage due to their inability to cover certain road
characteristics. In contrast, MAPSCE-GEN quickly achieves
complete coverage in both Town01 and Town02.

Town03 and Town04, characterized by a wide variety of
road characteristics, serve as ideal test cases for evaluating
the effectiveness of selecting geographically diverse lanes.
As shown in Fig. 7c, Fig. 7d, and Fig. 7e, MAPSCE-GEN
demonstrates superior exploration of diverse road characteris-
tics compared to RANDOM and CROUTE. The experiments
highlight MAPSCE-GEN’s ability to outperform in rapidly
exploring road characteristics on these maps, showcasing its
effectiveness in selecting geographically diverse lanes.

In Town10HD, depicted in Fig. 7f, all three methods achieve
coverage close to 100%. However, MAPSCE-GEN records
over 90% coverage later than the other methods. This delay is
attributed to the map’s lack of diverse geographical features,
which makes it challenging to find driving routes similar to
those already identified.

TABLE III: Results of RQ3: safety violations detected by
MAPSCE-GEN. Newly-covered lanes refer to those that cannot
be covered by existing work [34]–[36]. Previously-covered
lanes refer to those covered by existing work as well as
MAPSCE-GEN.

Safety Violations by Geographical Features

In Newly-Covered In Previously-Covered Safe
Lanes Lanes Scenarios

Lane-Invasion Stuck Lane-Invasion Stuck

Number 17 22 6 10 89

Rate 11.81% 15.28% 4.17% 6.94% 61.81%

In conclusion, the investigation into RQ2 provides valu-
able insights into the effectiveness of selecting geograph-
ically diverse lanes. Through a comprehensive comparison
of three driving scenario generation and selection meth-
ods—RANDOM, CROUTE, and MAPSCE-GEN —using the
Road Characteristics Coverage metric, we assess their ability
to cover diverse road characteristics across various town
scenarios. The visual representation in Fig. 7a and Fig. 7b
highlights the challenges faced by RANDOM and CROUTE
in achieving 100% coverage in Town01 and Town02, which
have relatively fewer diverse characteristics. The results for
Town03, Town04, and Town05 underscore the effectiveness
of MAPSCE-GEN in rapidly exploring diverse road charac-
teristics compared to the other methods, providing valuable
insights into the selection of geographically diverse lanes for
driving scenario generation.

Answer to RQ2: MAPSCE-GEN efficiently explores
diverse geographical features across various high-
definition maps and rapidly covers road characteristics.

D. RQ3: Detection of Safety Violations

We address RQ3 by evaluating MAPSCE-GEN’s effective-
ness in detecting safety violations caused by geographical
features. Specifically, we categorize the detected violations
into two groups: 1) violations caused by geographical features
in the lanes uniquely covered by MAPSCE-GEN, and 2)
violations caused by geographical features in the lanes covered
by existing work as well. We denote the lanes uniquely covered
in MAPSCE-GEN as Newly-Covered Lanes and those already
covered in existing work [34]–[36] as Previously-Covered
Lanes. For RQ3, we ran MAPSCE-GEN for 12 hours. All
violations detected in RQ3 occur due to geographical features
such as highway exits, uphill and downhill slopes, and curved
roads. We excluded from the RQ3 results any safety violations
caused by NPCs or other factors.

Table III presents an evaluation of safety violations caused
by geographical features in both Newly-Covered Lanes (pre-
viously uncovered) and Previously-Covered Lanes (already
covered in existing work). The majority of scenarios fall under
safe categories, with no safety violations occurring (61.64%).
Lane-invasion and stuck violations are significantly higher in

newly covered lanes compared to previously covered lanes.
This indicates that safety violations are more prevalent in
the lanes uniquely covered by our approach, which considers
diverse geographical features.

The result of the violation occurrences in Newly-Covered
Lanes compared to Previously-Covered Lanes reveals sub-
stantial differences. Lane-Invasion Violations are almost three
times more frequent in Newly-Covered Lanes, with an increase
factor of approximately 2.99 (increase factor = 12.33%

4.11% ≈
2.99). Similarly, Stuck Scenarios occur about 2.20 times
more often in Newly-Covered Lanes compared to Previously-
Covered Lanes (increase factor = 15.07%

6.85% ≈ 2.20). In both
cases, the increase factor indicates how many times more
frequently violations occur in Newly-Covered Lanes compared
to Previously-Covered Lanes. This suggests that violations are
significantly more common in the Newly-Covered Lanes.

Combining the results of both types of violations (Lane-
Invasion and Stuck), Newly-Covered Lanes exhibit an over-
all violation rate approximately 2.63 times higher than in
Previously-Covered Lanes. This comprehensive analysis high-
lights the effectiveness of MAPSCE-GEN in identifying and
addressing safety violations caused by geographical features.

(a-1) Lane Following (a-3) Stuck by uphill(a-2) Turn right at the junction

Fig. 8: Stuck caused by CHcurv and CHelev

Fig. 8 and Fig. 9 illustrate examples of safety violations
detected by MAPSCE-GEN. Fig. 8 presents a scenario where
the vehicle attempts a right turn at a junction and then gets
stuck upon encountering an uphill slope. This scenario is
challenging to discover using traditional generation techniques
that do not consider vertical geographical features of junctions
and connected roads because safety violations do not occur
when encountering the uphill slope on a straight drive.

Fig. 9a illustrates a safety violation due to the speed limit
geographical feature (i.e., CHspeed defined in Section IV-C).
Lane-invasion is critical not only because it violates traffic
regulations but also because it can lead to collision situations
or pose risks by interfering with the driving of other vehicles.
Furthermore, it is particularly significant as it represents a
safety violation occurring in a lane not previously covered
in existing work, highlighting the importance of addressing
such scenarios. The scenario depicted in Fig. 9b, where lane
invasion occurs while transitioning to another road, represents
a very challenging driving scenario to detect. The reason is
that there are very few classified driving routes falling into
this category. Among all the driving routes analyzed from the
7 high-definition maps, there are only 2 routes.

These examples demonstrate the capability of our approach
to uncover scenarios that are both geographically complex and

(a-1) Lane Following (a-3) Invalid Lane Following(a-2) Invalid Lane Change

(a) Lane-invasion caused by CHspeed

(b-1) Right Curvature Lane (b-3) Invalid Lane Following(b-2) Invalid Lane Change

(b) Lane-invasion caused by CHspeed and CHcurv

Fig. 9: Invasions of solid lanes caused by geographical features

present safety-violating situations. Each example highlights
specific characteristics or combinations of road features that
lead to unconventional and challenging driving scenarios.
Importantly, all these driving scenarios depict instances where
safety violations occur due to the geographical features that
can lead to hazardous situations.

Answer to RQ3: MAPSCE-GEN effectively detects
safety violations caused by geographical features.
Newly covered lanes exhibit a violation rate 2.63 times
higher than that of previously covered lanes.

VI. RELATED WORK

Random-based Scenario Generation. ScenoRITA [32] and
DoppelTest [33] use random-based generation to construct
driving scenarios. When generating ego-vehicle routes, two
valid points on the entire map are randomly selected to set as
the starting and ending points for the ego-vehicle. However,
it is necessary to perturb these scenarios into meaningful
driving scenarios through mutation because the generated sce-
narios did not consider the geographical features. Furthermore,
random-based generation tests autonomous driving systems
without precise knowledge of the driving routes.

Model-based Scenario Generation. ComOpT [34], AT-
LAS [35], and CROUTE [36] utilize predefined models for
generating driving routes through model-based generation.
In these approaches, the basic unit for generating an ego-
vehicle’s route is a path that passes through only one junction.
Consequently, scenarios generated using these methods often
overlook roads that possess unique geographical features.
These methodologies [34]–[36] also classify scenarios based
on specific criteria, prioritizing the execution of a diverse
set of routes during each generation and evaluation, which
is more effective for testing than running similar routes. For
example, ComOpT [34] checks scenarios against 9 predefined

junction classes based on factors like the number of connected
roads and their angles, categorizing them accordingly. On the
other hand, ATLAS [35] categorizes junction lanes, identifying
13 junction lanes based on lane count and junction vector.
CROUTE [36] further refines this by classifying features into
29 detailed junction types, contributing to generating various
routes for ego-vehicles. However, these methods mainly focus
on the diversity of traversed junctions, posing a challenge
in categorizing based on the starting and destination roads’
characteristics. In contrast, MAPSCE-GEN enables detailed
classification by considering not only junctions but also con-
nected lanes’ geographical features. Unlike existing work that
analyzes only a few predefined types of junction character-
istics, MAPSCE-GEN extracts geographical features from the
entire map and represents them in binary codes, allowing for
classification into a wider range of characteristics.

Road Structure Generation. AsFault [37] first proposed
a method for generating road structures. Additionally, in
the SBFT (Search-Based and Fuzz Testing) tool competition
(formerly SBST) [40]–[42], several studies have focused on
autonomous driving tests that generate road structures. Most
prior work [37]–[39], [44] constructs only curved road struc-
tures without considering vertical features such as elevation
and number of connected lanes. EvoScenario [43] defines and
generates complex lane structures such as contract, expand,
merge, and split. Our work achieves a different goal from
existing works that generate road structures [37]–[44]. These
works generate maps with newly created road structures in
small units. In contrast, our work uses an existing map to
thoroughly explore geographical features across the entire
map. This offers a practical way to test geographical fea-
tures, especially when using real-world maps converted into
simulation-compatible. Additionally, our work complements
the road structure generation works by applying our approach
to the maps they produce.

VII. THREATS TO VALIDITY

The threats to internal validity may arise from numerous
parameters inherent in simulation testing. While the safety
violations identified by our approach appear to be caused by
geographical features, there remains a possibility of safety
violations resulting from other factors. To address this concern,
we configure the object layer to ensure that other objects per-
form only legal actions. Additionally, conservative conditions
are integrated into the lane detector and stuck detector to
exclude cases potentially caused by other elements.

The threats to external validity is that we apply MAPSCE-
GEN to single autonomous driving system, Autoware-Universe
[45]. While Autoware-Universe is widely utilized as an open-
source autonomous driving software, it is important to note
that it is research-grade. software. In the future, we plan to ex-
tend our experiments to include production-grade autonomous
driving software, such as Baidu Apollo [54].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose MAPSCE-GEN, a model-based
scenario generation approach for autonomous driving systems,
that targets safety violations caused by geographical features.
MAPSCE-GEN introduces route generation and route classifi-
cation to generate geographically complex driving scenarios.
Our evaluation results show that MAPSCE-GEN effectively
identifies safety violations arising from diverse geographical
features, demonstrating its capability to enhance the safety and
reliability of autonomous driving systems.

The future work involves integrating our generated driving
scenarios into mutation-based testing as seed scenarios. This
integration can enhance the diversity and scope of test inputs
by introducing realistic and geographically complex scenar-
ios, and allow for a more comprehensive evaluation across
challenging situations. Furthermore, applying our scenarios in
mutation-based testing may uncover novel corner cases and
safety-critical scenarios. This will contribute to a more robust
safety assessment by revealing unforeseen interactions in the
autonomous driving system’s behaviors.

IX. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their construc-
tive feedback. This work was supported by the Ministry
of Education of the Republic of Korea and the National
Research Foundation of Korea (2022R1A2C10911913 and
2021R1G1A109355411).

REFERENCES

[1] J. Bote, “Cruise vehicle gets stuck in wet concrete while driving in san
francisco,” SFGATE, 2023, [Online].

[2] J. Valinsky, “Complete meltdown: Driverless cars in san francisco stall
causing a traffic jam,” CNN Business, 2023, [Online].

[3] J. Mulach, “Autonomous cars cause gridlock in yet another us city,”
DRIVE, 2023, [Online].

[4] B. Yu, “Robotaxis halt traffic in san francisco’s north beach day after
expansion approval,” CBS News, 2023, [Online].

[5] K. Truong, “Sf officials describe chaos from cruise, waymo cars as they
try to slow their rollout,” The San Francisco Standard Business, 2023.

[6] C. News, “Driverless robotaxi crashes with fire truck in san francisco;
passenger injured,” CBS News, 2023, [Online].

[7] A. Rose, “A woman was found trapped under a driverless car. it wasn’t
the first car to hit her,” CNN Business, 2023, [Online].

[8] A. R. C. Bieber, “93% have concerns about self-driving cars according
to new forbes legal survey,” Forbes Advisor Legal, 2024, [Online].

[9] C. Spondent, “Report: self-driving car ‘unable to navigate birmingham’s
spaghetti junction’,” BBC Top Gear, 2023, [Online].

[10] H. Wen, Z. Ma, Z. Chen, and C. Luo, “Analyzing the impact of curve and
slope on multi-vehicle truck crash severity on mountainous freeways,”
Accident Analysis & Prevention, vol. 181, p. 106951, 2023.

[11] R. Fu, Y. Guo, W. Yuan, H. Feng, and Y. Ma, “The correlation between
gradients of descending roads and accident rates,” Safety science, vol. 49,
no. 3, pp. 416–423, 2011.

[12] G. Cheng, R. Cheng, Y. Pei, and L. Xu, “Probability of roadside
accidents for curved sections on highways,” Mathematical Problems in
Engineering, vol. 2020, pp. 1–18, 2020.

[13] K. Czarnecki, “Operational world model ontology for automated driving
systems–part 1: Road structure,” Waterloo Intelligent Systems Engineer-
ing Lab (WISE) Report, University of Waterloo, 2018.

[14] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
Transportation Research Part A: Policy and Practice, vol. 94, pp. 182–
193, 2016.

https://www.sfgate.com/tech/article/cruise-stuck-wet-concrete-sf-18297946.php
https://edition.cnn.com/2023/08/14/business/driverless-cars-san-francisco-cruise/index.html
https://www.drive.com.au/news/autonomous-car-robotaxi-traffic-jam-in-texas/
https://www.cbsnews.com/sanfrancisco/news/robotaxis-halt-traffic-in-san-franciscos-north-beach-day-after-expansion-approval/
https://www.cbsnews.com/sanfrancisco/news/cruise-driverless-car-crash-san-francisco-fire-truck/
https://edition.cnn.com/2023/10/03/tech/driverless-car-pedestrian-injury/index.html
https://www.forbes.com/advisor/legal/auto-accident/perception-of-self-driving-cars/
https://www.topgear.com/car-news/satire/report-self-driving-car-unable-navigate-birminghams-spaghetti-junction

[15] R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing
advanced driver assistance systems using multi-objective search and
neural networks,” in Proceedings of the 31st IEEE/ACM international
conference on automated software engineering, 2016, pp. 63–74.

[16] R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand, and T. Stifter,
“Testing autonomous cars for feature interaction failures using many-
objective search,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 143–154.

[17] J. Zhou and L. del Re, “Safety verification of adas by collision-
free boundary searching of a parameterized catalog,” in 2018 Annual
American Control Conference (ACC). IEEE, 2018, pp. 4790–4795.

[18] Y. Abeysirigoonawardena, F. Shkurti, and G. Dudek, “Generating adver-
sarial driving scenarios in high-fidelity simulators,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 8271–8277.

[19] J. Norden, M. O’Kelly, and A. Sinha, “Efficient black-box assessment
of autonomous vehicle safety,” in NeurIPS 2019 Workshop on Machine
Learning for Autonomous Driving, 2019.

[20] Z. Ghodsi, S. K. S. Hari, I. Frosio, T. Tsai, A. Troccoli, S. W. Keckler,
S. Garg, and A. Anandkumar, “Generating and characterizing scenarios
for safety testing of autonomous vehicles,” in 2021 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2021, pp. 157–164.

[21] Y. Luo, X.-Y. Zhang, P. Arcaini, Z. Jin, H. Zhao, F. Ishikawa, R. Wu,
and T. Xie, “Targeting requirements violations of autonomous driving
systems by dynamic evolutionary search,” in 2021 36th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2021, pp. 279–291.

[22] G. Li, Y. Li, S. Jha, T. Tsai, M. Sullivan, S. K. S. Hari, Z. Kalbarczyk,
and R. Iyer, “Av-fuzzer: Finding safety violations in autonomous driving
systems,” in 2020 IEEE 31st international symposium on software
reliability engineering (ISSRE). IEEE, 2020, pp. 25–36.

[23] A. Calò, P. Arcaini, S. Ali, F. Hauer, and F. Ishikawa, “Generating
avoidable collision scenarios for testing autonomous driving systems,”
in 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST). IEEE, 2020, pp. 375–386.

[24] S. Kim, M. Liu, J. J. Rhee, Y. Jeon, Y. Kwon, and C. H. Kim, “Drivefuzz:
Discovering autonomous driving bugs through driving quality-guided
fuzzing,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 1753–1767.

[25] Z. Zhong, G. Kaiser, and B. Ray, “Neural network guided evolutionary
fuzzing for finding traffic violations of autonomous vehicles,” IEEE
Transactions on Software Engineering, 2022.

[26] Z. Wan, J. Shen, J. Chuang, X. Xia, J. Garcia, J. Ma, and Q. A. Chen,
“Too afraid to drive: Systematic discovery of semantic dos vulnerability
in autonomous driving planning under physical-world attacks,” ISOC
Network and Distributed Systems Security (NDSS) Symposium, 2022.

[27] H. Tian, Y. Jiang, G. Wu, J. Yan, J. Wei, W. Chen, S. Li, and D. Ye,
“Mosat: finding safety violations of autonomous driving systems using
multi-objective genetic algorithm,” in Proceedings of the 30th ACM
Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2022, pp. 94–106.

[28] Y. Sun, C. M. Poskitt, J. Sun, Y. Chen, and Z. Yang, “Lawbreaker: An
approach for specifying traffic laws and fuzzing autonomous vehicles,”
in Proceedings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1–12.

[29] M. Cheng, Y. Zhou, and X. Xie, “Behavexplor: Behavior diversity
guided testing for autonomous driving systems,” in Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2023, pp. 488–500.

[30] Z. Hu, S. Guo, Z. Zhong, and K. Li, “Coverage-based scene fuzzing
for virtual autonomous driving testing,” CoRR, vol. abs/2106.00873,
2021. [Online]. Available: https://arxiv.org/abs/2106.00873

[31] J. Zhou, S. Tang, Y. Guo, Y.-F. Li, and Y. Xue, “From collision
to verdict: Responsibility attribution for autonomous driving systems
testing,” in 2023 IEEE 34th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 2023, pp. 321–332.

[32] Y. Huai, S. Almanee, Y. Chen, X. Wu, Q. A. Chen, and J. Garcia, “sceno
rita: Generating diverse, fully-mutable, test scenarios for autonomous
vehicle planning,” IEEE Transactions on Software Engineering, 2023.

[33] Y. Huai, Y. Chen, S. Almanee, T. Ngo, X. Liao, Z. Wan, Q. A. Chen,
and J. Garcia, “Doppelgänger test generation for revealing bugs in
autonomous driving software,” in 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE), 2023, pp. 2591–2603.

[34] C. Li, C.-H. Cheng, T. Sun, Y. Chen, and R. Yan, “Comopt: Combination
and optimization for testing autonomous driving systems,” in 2022

International Conference on Robotics and Automation (ICRA). IEEE,
2022, pp. 7738–7744.

[35] Y. Tang, Y. Zhou, T. Zhang, F. Wu, Y. Liu, and G. Wang, “Systematic
testing of autonomous driving systems using map topology-based sce-
nario classification,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2021, pp. 1342–1346.

[36] Y. Tang, Y. Zhou, F. Wu, Y. Liu, J. Sun, W. Huang, and G. Wang,
“Route coverage testing for autonomous vehicles via map modeling,”
in 2021 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2021, pp. 11 450–11 456.

[37] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-driving
cars with search-based procedural content generation,” in Proceedings of
the 28th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2019, pp. 318–328.

[38] E. Castellano, A. Cetinkaya, and P. Arcaini, “Analysis of road represen-
tations in search-based testing of autonomous driving systems,” in 2021
IEEE 21st International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 2021, pp. 167–178.

[39] Y. Tang, Y. Zhou, K. Yang, Z. Zhong, B. Ray, Y. Liu, P. Zhang, and
J. Chen, “Automatic map generation for autonomous driving system
testing,” arXiv preprint arXiv:2206.09357, 2022.

[40] S. Panichella, A. Gambi, F. Zampetti, and V. Riccio, “Sbst tool competi-
tion 2021,” in 2021 IEEE/ACM 14th International Workshop on Search-
Based Software Testing (SBST). IEEE, 2021, pp. 20–27.

[41] A. Gambi, G. Jahangirova, V. Riccio, and F. Zampetti, “Sbst tool
competition 2022,” in Proceedings of the 15th Workshop on Search-
Based Software Testing, 2022, pp. 25–32.

[42] M. Biagiola, S. Klikovits, J. Peltomäki, and V. Riccio, “Sbft tool
competition 2023-cyber-physical systems track,” in 2023 IEEE/ACM
International Workshop on Search-Based and Fuzz Testing (SBFT).
IEEE, 2023, pp. 45–48.

[43] S. Tang, Z. Zhang, J. Zhou, Y. Zhou, Y.-F. Li, and Y. Xue, “Evosce-
nario: Integrating road structures into critical scenario generation for
autonomous driving system testing,” in IEEE 34th International Sympo-
sium on Software Reliability Engineering (ISSRE), 2023, pp. 309–320.

[44] Z. Bao, S. Hossain, H. Lang, and X. Lin, “A review of high-definition
map creation methods for autonomous driving,” Engineering Applica-
tions of Artificial Intelligence, vol. 122, p. 106125, 2023.

[45] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi, Y. Kit-
sukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware on
board: Enabling autonomous vehicles with embedded systems,” in 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems
(ICCPS). IEEE, 2018, pp. 287–296.

[46] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “Carla:
An open urban driving simulator,” in Conference on robot learning.
PMLR, 2017, pp. 1–16.

[47] G. Bagschik, T. Menzel, and M. Maurer, “Ontology based scene creation
for the development of automated vehicles,” in 2018 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2018, pp. 1813–1820.

[48] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
IEEE Pervasive computing, vol. 7, no. 4, pp. 12–18, 2008.

[49] ASAM, “Asam opendrive,” Association for Standardization of Automa-
tion and Measuring Systems, 2023, [Online].

[50] F. Poggenhans, J.-H. Pauls, J. Janosovits, S. Orf, M. Naumann, F. Kuhnt,
and M. Mayr, “Lanelet2: A high-definition map framework for the
future of automated driving,” in 2018 21st international conference on
intelligent transportation systems (ITSC). IEEE, 2018, pp. 1672–1679.

[51] D. E. Goldberg, Genetic algorithms. pearson education India, 2013.
[52] G. Rong, B. H. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Možeiko,

E. Boise, G. Uhm, M. Gerow, S. Mehta et al., “Lgsvl simulator: A
high fidelity simulator for autonomous driving,” in 2020 IEEE 23rd
International conference on intelligent transportation systems (ITSC).
IEEE, 2020, pp. 1–6.

[53] Carla, “Lane detector,” Carla Simulator, 2021, [Online].
[54] Baidu, Apollo: Open source autonomous driving, [Online].

https://arxiv.org/abs/2106.00873
https://www.asam.net/standards/detail/opendrive/
https://carla.readthedocs.io/en/0.9.13/ref_sensors/#lane-invasion-detector
https://github.com/ApolloAuto/apollo/releases/tag/

	Introduction
	Background
	Autonomous Driving Scenarios
	Scenario-generation Approach
	Map-generation Approach

	Approach Overview
	MapSce-Gen
	Road Graph Construction
	Route Generation
	Route Classification
	Geographical Features
	Route Dictionary

	Scenario Construction

	Evaluation
	Experimental Setup
	RQ1: Lane Coverage
	RQ2: Road Characteristics Coverage
	RQ3: Detection of Safety Violations

	Related Work
	Threats to Validity
	Conclusion and Future Work
	Acknowledgements
	References

