
Fault Localization and Repair for Java Runtime Exceptions

Saurabh Sinha
IBM India Research Lab

New Delhi, India
saurabhsinha@in.ibm.com

Hina Shah
Georgia Tech

Atlanta, Georgia, U.S.A.
hinashah@cc.gatech.edu

Carsten Görg
Georgia Tech

Atlanta, Georgia, U.S.A.
goerg@cc.gatech.edu

Shujuan Jiang
CUMT

Xuzhou, Jiangsu, China
shjjiang@cumt.edu.cn

Mijung Kim
Georgia Tech

Atlanta, Georgia, U.S.A.
mijung.kim@cc.gatech.edu

Mary Jean Harrold
Georgia Tech

Atlanta, Georgia, U.S.A.
harrold@cc.gatech.edu

ABSTRACT
This paper presents a new approach for locating and repairing faults
that cause runtime exceptions in Java programs. The approach han-
dles runtime exceptions that involve a flow of an incorrect value
that finally leads to the exception. This important class of excep-
tions includes exceptions related to dereferences of null pointers,
arithmetic faults (e.g., ArithmeticException), and type faults (e.g.,
ArrayStoreException). Given a statement at which such an ex-
ception occurred, the technique combines dynamic analysis (us-
ing stack-trace information) with static backward data-flow analy-
sis (beginning at the point where the runtime exception occurred)
to identify the source statement at which an incorrect assignment
was made; this information is required to locate the fault. The
approach also identifies the source statements that may cause this
same exception on other executions, along with the reference state-
ments that may raise an exception in other executions because of
this incorrect assignment; this information is required to repair the
fault. The paper also presents an application of our technique to
null pointer exceptions. Finally, the paper describes an implemen-
tation of the null-pointer-exception analysis and a set of studies
that demonstrate the advantages of our approach for locating and
repairing faults in the program.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids; F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Program analysis

General Terms

Algorithms, Experimentation, Measurement

Keywords

Fault localization, runtime exceptions, static analysis, null derefer-
ence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’09, July 19–23, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-338-9/09/07 ...$5.00.

1. INTRODUCTION
Programming languages, such as Java, that are designed for ro-

bustness provide an exception-handling mechanism. Under this
mechanism, when a semantic constraint of the programming lan-
guage is violated, (e.g., trying to access an element outside the
bounds of an array), an exception is raised to indicate the error,
the regular flow of control is interrupted, and there is an attempt to
transfer control to a designated part of the program that tries to re-
cover from the error. If recovery is possible, the program continues
within the regular flow of control.
Exceptions in Java can be classified as: application exceptions

that are explicitly thrown in response to exceptional conditions in
an application, and runtime exceptions that are generated by the
Java runtime environment. There has been considerable research
on application exceptions that has resulted in techniques for ana-
lyzing them to provide useful information to developers (e.g., [5,
11, 14]). However, there has been little research that studies run-
time exceptions, although they occur often in executing Java pro-
grams. Such exceptions represent programming errors, and include
arithmetic exceptions, such as dividing by zero, and dereferences of
null pointers. Because Java does not require that methods specify
or catch such exceptions, when they occur during execution, there
is typically no exception handler available to handle the condition,
and the program terminates.
To illustrate, consider the example program in Figure 1. Exe-

cuting the program with input value x results in the following null
pointer exception and stack trace:

Exception in thread "main" java.lang.NullPointerException

at RTEExample.method3(RTEExample.java:30)

at RTEExample.method4(RTEExample.java:33)

at RTEExample.main(RTEExample.java:5)

The stack trace shows that the null pointer exception was thrown
in method3 at line 30 (i.e., the dereferenced field string1 was
null). The stack trace also shows that method4 and main were
still on the stack when the exception occurred, that main called
method4 at line 5, and that method4 called method3 at line 33.
When these runtime exceptions occur, the Java runtime environ-

ment stores information in the stack trace that can help the devel-
oper locate and fix the fault that causes the exception. The stack
trace includes information about which line of code threw the ex-
ception and the method that contains that line of code. The stack
trace also contains all methods currently on the runtime stack, along
with the statements in those methods at which the method calls
were made.
Although the stack trace can be useful in locating the code or the

conditions that cause the exception to be raised, the granularity of
the information provided in the stack trace may be too coarse to

153

public class RTEExample {

String string1,string2; 17. public void method1(int j) {

int val; 18. if (j == 0) {

1. public static void main(String args[]) { 19. String tempStr = null; // NP assignment

2. RTEExample rte = 20. string1 = tempStr;

new RTEExample(args[0].length()); } else {

3. if (args.length == 1) { 21. string1 = null; // NP assignment

4. rte.method2(); }

5. rte.method4(); 22. string2.charAt(0); // NP dereference

} else { 23. }

6. int num = Integer.parseInt(args[1]); 24. public void method2() {

7. rte.method1(num); 25. string1 = string2;

} 26. }

8. rte.method3(); 27. public void method3() {

9. } 28. if (val > 1) {

10. public RTEExample(int i) { 29. string2.charAt(0);

11. val = i; }

12. string1 = null; // NP assignment 30. string1.charAt(0); // NP dereference

13. string2 = null; // NP assignment 31. }

14. if (val > 1) { 32. public void method4() {

15. string2 = new String("abc"); 33. method3();

} 34. }

16. } }

Figure 1: Java program RTEExample that illustrates runtime exceptions and the interprocedural control-flow graph for the program.

assist in locating the cause of the exception. The stack trace con-
tains only the methods that are involved in the execution and the
statement at which a method call was made, but does not contain
information about the flow of control through the method. Thus,
to locate the cause of the exception, the developer must inspect
the execution manually, using the stack trace, and attempt to un-
derstand the flow of control through the calling methods. Further-
more, methods that have been called during the execution and have
already returned will not appear in the stack trace. Thus, during
the manual inspection of the methods to locate the cause of the ex-
ception, the developer may miss methods that were involved in the
execution, or may not understand the complex flow of control in the
program. Finally, after the location of the cause of the exception is
found, the stack trace provides little information to assist the de-
veloper in repairing the fault. The developer must locate manually
other statements in the program that may cause the exception to be
raised in other executions and, therefore, must be considered to fix
the fault that caused the exception in this execution.
To illustrate, consider again the stack trace resulting from execut-
ing the program in Figure 1 with input value x. Further inspection

shows that none of the methods in the stack trace contains an as-
signment to string1, the field whose dereference in statement 30
resulted in the exception. Thus, the stack-trace information alone
is insufficient for finding the cause of this exception. Figure 1 dis-
plays the interprocedural control flow graph1 for our example pro-
gram. The execution path for input value x consists of:

1, 2a, 10, 11, 12, 13, 14, 16, 2b, 3, 4a, 24, 25, 26, 4b,
5a, 32, 33a, 27, 28, 30.

A careful examination of this execution shows that the null as-
signment that caused the null pointer exception occurred at state-
ment 13, where string2 was assigned a null value. This value
was copied to string1 at statement 25, and then dereferenced at
statement 30. Neither the constructor that contains statement 13

1
A control-flow graph (CFG) for a method contains nodes that represent
statements and edges that represent the flow of control between statements.
An interprocedural control-flow graph (ICFG) contains a CFG for each
method in the program. A call site is represented using a call node and
a return node. At each call site, a call edge connects the call node to the
entry node of the called method; a return edge connects the exit node of the
called method to the return node.

154

nor the method that contains statement 25 is on the stack when this
exception is thrown. Further examination of the rest of the program
shows that the null values assigned at statements 19 and 21 could
also reach the dereference at statement 30 in some other execution;
such statements should be considered while repairing the fault.
To address the limitations of existing techniques, we have devel-
oped, and present in this paper, a new approach that automatically
identifies the cause of a runtime exception, and provides context
information to assist the developer in repairing the fault. Our ap-
proach identifies the source statement(s) responsible for the excep-
tion in the failing execution; this information is required to locate
the fault. Our approach also identifies (1) other source statements
that may cause this same exception to be raised on other executions,
and (2) other reference statements whose execution may result in
exceptions in other executions because of the same source state-
ment; this information is required to repair the fault.
The approach combines dynamic analysis (using stack-trace in-
formation) with static backward data-flow analysis (starting at the
point where the runtime exception occurred). The approach han-
dles runtime exceptions that involve a flow of an incorrect value
that finally leads to the exception. This important class of ex-
ceptions includes (1) exceptions caused by dereferences of null
pointers, (2) exceptions related to arithmetic faults, such as Arith-
meticException, and (3) exceptions related to type faults, such as
ArrayStoreException. To illustrate our approach, we applied it to
null pointer exceptions. Our technique extends an interprocedu-
ral path-sensitive and context-sensitive analysis that finds potential
dereferences of null values [10]. The extensions include incorpo-
rating the use of the stack trace for a failing execution and finding
context information required to repair the fault.
In this paper, we also present the results of studies that we per-
formed on a set of open-source programs. Our studies evaluate the
effectiveness of our technique in finding the null pointer assign-
ment(s) that cause a runtime exception in Java programs, and show
that our technique is more effective than using a static-analysis ap-
proach or the stack-trace information alone. Our studies also show
the additional information that our technique finds that can assist in
repairing the fault.
The main benefit of our approach is that it automates the search
for the cause of runtime exceptions using readily available dynamic
information about the execution in the form of the stack trace. Thus,
it reduces the manual effort required to locate the fault, which re-
duces debugging time. Another benefit of our approach is that it
automates the identification of code that is not responsible for the
exception on this execution but that may cause the same exception
on other executions. Thus, it provides the developer with the nec-
essary context for fixing the fault, and ensuring that the exception
does not occur on subsequent executions. A third benefit of our ap-
proach is that it applies to an important class of runtime exceptions
that occur often in practice. Thus, it can be an important tool for
use by developers that will reduce the time to find and fix faults
caused by this class of runtime exceptions.
The contributions of the paper include

• A presentation of a novel approach for locating faults that
cause runtime exceptions and for providing context informa-
tion required for fixing the faults

• A description of a technique that applies the approach to null
pointer exceptions

• The results of analytical and empirical evaluations that show
that our technique is more effective than other techniques
based on static analysis or stack-trace information alone

2. OVERVIEW OF OUR APPROACH
In this section, we present a high-level overview of our approach

for supporting fault localization and fault repair using a combina-
tion of static and dynamic analysis. As mentioned earlier, currently,
our approach is limited to failures caused by the flow of an incor-
rect value from a source statement to the program point where the
value causes a failure.
Our approach consists of two phases. In the first phase, our tech-

nique assists in fault localization by providing the location of the
source statement that is responsible for the runtime exception. In
the second phase, our technique assists in fault repair by provid-
ing context information about other statements that are related to
this exception, and may be involved in runtime exceptions in other
executions. We present an overview of these phases in turn.
In execution E in which an exception was raised at reference

statement sr(E), there is exactly one statement sa(E) at which the
incorrect value that caused the exception is generated. The goal
of Phase 1 of our technique is to locate this source statement. For
example, for a NullPointerException at statement x.f, sa(E) is the
statement that assigned a null value to x. For an ArithmeticEx-
ception at statement z = (x-y), sa(E) is the statement at which
the expression (x-y) became zero—this statement could be an as-
signment to either x or y. For an ArrayStoreException at statement
a[i] = x, sa(E) is the statement that assigned an incorrect type to
x that caused the exception.
To locate sa(E), our approach performs a backward interprocedu-

ral data-flow analysis of the program, starting at sr(E). The analy-
sis is guided by the available dynamic information about the failing
execution E . In most cases of field failures, the only dynamic in-
formation available is the stack trace associated with E . Therefore,
we illustrate the analysis using stack-trace information. However,
when additional dynamic information, such as branch traces, are
available, our approach can use such information.2

The result of this stack-trace-driven analysis lets us classify the
source statements sa(E) into two categories: definite and possible.
In some cases, the analysis computes a unique source statement at
which the incorrect value that reaches sr(E) is generated. For this
case, this statement definitely caused the exception in execution E .
Thus, we classify sa(E) as a definite incorrect assignment, and we
know that it is the cause of the exception. In other cases, the anal-
ysis computes more than one source statement at which the incor-
rect value that reaches sr(E) in E could have been generated. Be-
cause the stack trace provides no control-flow information within
the methods, there may be multiple possible source statements that
could have caused the exception at sr(E) in E . For example, if
a method M that is executed in E has a conditional statement c
where an incorrect value is generated along both branches of c, the
analysis cannot determine which of the branches was executed in
E . Although in such cases the analysis cannot determine which of
a set of source statements assigned the incorrect value that caused
the exception at sr(E), it can determine that at least one of the set
of statements did cause the exception. Thus, we classify statements
sa(E) as possible incorrect assignments, and we know that at least
one of them caused the exception on execution E .
Figure 2 illustrates the information that our technique provides.

In the figure, the shaded area represents the execution E on which
the runtime exception was thrown at sr(E). The figure shows the
case in which the analysis was able to identify the exact statement

2
In some cases, the inputs that cause failures may be available. For exam-
ple, some of the BUGZILLA reports for the Ant project that we examined
contained the build files on which null pointer exceptions occurred. In such
cases, more detailed dynamic information can be computed in-house by in-
strumenting the code and executing it on the failing test inputs.

155

Table 1: Failing executions, corresponding stack traces, and NPA and NPR classifications, for the example program.
Definite/Possible

Execution Definite Possible Maybe Maybe NPAs in a Method
Number Input Execution Path Stack Trace NPA NPA NPA NPR in the Stack Trace

1 <x> 1, 2a, 10, 11, 12, 13, 14, 16, 2b, 3, 4a, method3(RTEExample.java:30) 13 – 19, 21 22 –
24, 25, 26, 4b, 5a, 32, 33a, 27, 28, 30 method4(RTEExample.java:33)

main(RTEExample.java:5)

2 <xx,0> 1, 2a, 10, 11, 12, 13, 14, 15, 16, 2b, 3, method3(RTEExample.java:30) – 19, 21 13 – –
6, 7a, 17, 18, 19, 20, 22, 23, 7b, 8a, 27, main(RTEExample.java:8)

28, 29, 30

3 <xx,1> 1, 2a, 10, 11, 12, 13, 14, 15, 16, 2b, 3, method3(RTEExample.java:30) – 19, 21 13 – –
6, 7a, 17, 18, 21, 22, 23, 7b, 8a, 27, 28, main(RTEExample.java:8)

29, 30

4 <x,1> 1, 2a, 10, 11, 12, 13, 14, 16, 2b, 3, 6, method1(RTEExample.java:22) 13 – – 30 –
7a, 17, 18, 21, 22 main(RTEExample.java:7)

Figure 2: Categories of assignments and references identified

by our technique.

sa(E) that caused the exception to be raised at sr(E). Thus, in the
figure, sa(E) is a definite incorrect assignment.
After Phase 1 of our analysis, the developer can choose Phase 2
of the analysis, which provides context for fixing the fault. In par-
ticular, Phase 2 provides information about other statements that
are related to both sa(E) and sr(E) and should be considered when
fixing the fault. For sr(E), our technique finds all statements sa

that could assign incorrect values that could reach sr(E) and cause
an exception on an execution other than E . For sa(E), our technique
locates all statements sr that the incorrect value at sa(E) could
reach on an execution other than E and cause an exception to be
raised. We classify statements, such as sa, as maybe assignments
and statements, such as sr , as maybe references.
To illustrate, consider again Figure 2. The figure shows that a set
of statements, sa1, . . . , sai, have been identified that could assign
incorrect values that may flow to sr(E), and cause an exception to
be raised on executions other than E . The figure also shows that a
set of statements, sr1, . . . , srj , could reference the incorrect value
assigned at sa(E) in other executions and cause a runtime exception
to be raised. Both kinds of statements provide context for fixing the
fault related to the exception that was raised at sr(E).

3. APPLICATIONOFOURAPPROACHTO

NULL POINTER EXCEPTIONS
To demonstrate our approach that uses static analysis (in the
form of backward data-flow analysis) guided by dynamic infor-
mation (in the form of the stack trace) to assist in fault localiza-
tion and fault repair, we applied it to null pointer exceptions. Our
approach uses the null-dereference analysis implemented in a tool
called XYLEM [10], which we refer to as XYLEM analysis.
In this section, we first discuss null pointer assignments and
dereferences. Then, we provide an overview of the XYLEM analysis
(details can be found in Reference [10]) and discuss the modifica-
tions we made to it for use in our new algorithm. After that, we
present the details of our two-phase algorithm.

3.1 Null Assignments and Dereferences
In Java, a NullPointerException is thrown at a statement that

dereferences a variable or a field that has a null value. A null
pointer assignment (NPA) is a statement at which a null value orig-
inates; examples of null pointer assignments include statements
“x = null,” “return null,” and “foo(null)” (a null value
for an actual parameter at a method call). A null pointer deref-
erence (NPR) is a dereference statement at which the dereferenced
variable could potentially be null. In the example in Figure 1, state-
ment 13 is a null pointer assignment, and statement 22—at which
string2 can potentially be null—is a null pointer dereference.
In keeping with the classification of source statements related to

the runtime exception at sr(E) for execution E , we classify an NPA
as definite, possible, or maybe: sa(E) is a definite NPA if the null
value generated at sa(E) was the one dereferenced at sr(E) in E ;
sa(E) is a possible NPA if the null value generated at sa(E) could
have been dereferenced at sr(E) in E ; sa is a maybe NPA if the null
value generated at sa was definitely not dereferenced at sr(E) in E ,
but could be dereferenced at sr(E) in other executions. There exists
a unique definite NPA for each null pointer exception, and the goal
of Phase 1 of our approach is to identify that NPA.
Table 1 lists four failing executions that result in null pointer

exceptions for RTEExample (Figure 1). For each execution, the
table shows an execution number (column 1), the program input
(column 2), the path traversed by the execution (column 3), the
stack trace (column 4), the definite, possible, and maybe NPAs
(columns 5–7) identified by our analysis (using the stack trace), and
whether the definite or possible NPAs were contained in a method
that is in the stack trace for that execution (column 9). (We dis-
cuss column 8 later.) In each execution path, the last statement is
the NPR and the statement shown in boldface is the NPA at which
the dereferenced null value originates. For example, in execution
1, the null assignment at statement 13 causes the null dereference
at statement 30. For this execution, our analysis identifies state-
ment 13 as the definite NPA, no statements as possible NPAs, and
statements 19 and 21 as maybe NPAs. Note that, statically, the null
values generated at each of statements 13, 19, and 21, reach state-
ment 30. However, based on the stack configuration, the analysis
determines that statement 13 is the NPA that caused the null pointer
exception in execution 1 and, therefore, that statements 19 and 21
definitely did not cause the execution to fail.
For execution 2, the analysis cannot identify the definite NPA.

The stack trace contains insufficient information for the analysis
to determine which branch from condition statement 18 was taken
during the execution. Therefore, the analysis assumes that either
branch could have been taken, and classifies statements 19 and 21
as possible NPAs. The analysis can, however, determine that state-
ment 13 definitely could not have caused the null pointer exception
in execution 2, and thus, classifies it as a maybe NPA.

156

To support the repair of null-dereference faults, in addition to the
maybe NPAs, our approach computes maybe NPRs for a definite
NPA. For a definite NPA sa(E) that caused a runtime exception in
execution E , a maybe NPR is a statement that did not dereference
the null value generated at sa(E) in E , but that could dereference
the null value in a different execution. Column 8 of Table 1 lists
the maybe NPRs for the four executions of RTEExample. For ex-
ample, for definite NPA 13 in execution 1, statement 22 is a maybe
NPR. Although statement 22 does not dereference the null value in
execution 1, it can dereference that value in a different execution,
as illustrated by execution 4.

3.2 Overview of the XYLEM Analysis
The XYLEM analysis is purely static and, for an NPR, it contin-
ues its analysis until one NPA is located. This NPA is one that can
occur on some execution of the program [10]. For our approach,
we modified the original XYLEM analysis in two ways: (1) instead
of stopping when it finds one NPA, the analysis continues until it
finds all NPAs on the paths that it considers; (2) the analysis is pa-
rameterized so that the method for finding which calling methods
and which CFG predecessors to consider in the analysis is specified
as a parameter to the analysis.
Starting at a statement sr that dereferences variable v, XYLEM
performs a backward, path-sensitive analysis to determine whether
v could be null at sr . During the analysis, it propagates a set of
abstract state predicates backward in the CFG. The analysis starts
with a predicate asserting that v is null, and updates states during
the path traversal. If the updated state becomes inconsistent, the
path is infeasible and the analysis stops traversing the path.
Figure 3 presents algorithm, ComputeNPA, for identifying NPAs.
The algorithm takes as input the dereference statement sr of vari-
able v from which to start the traversal, along with a dispatcher
D that locates the methods into which the backward analysis con-
tinues when the entry of a method is reached and the CFG prede-
cessors from which the analysis continues. The algorithm returns
as output N , a set of NPAs. For each sa in N , the algorithm has
found a path along which the null value assigned at sa may be
dereferenced at sr .
The algorithm initializes the state Γ with predicates 〈v = null〉
(v is the variable dereferenced at sr) and 〈this 6= null〉 (line 1),
and then calls procedure analyzeMethod (line 2), which uses a
standard worklist-based approach to compute a fix-point solution
over the abstract state predicates (lines 4–22). To perform efficient
analysis, XYLEM abstracts away arithmetic expressions; thus, the
number of generated predicates is bounded and the analysis is guar-
anteed to terminate. The analysis traverses a loop until the state no
longer changes from one iteration to the next. Because, integer
arithmetic over the loop induction variable is abstracted away, the
analysis of a loop is bounded. The analysis uses back substitutions
to update state predicates. For example, at a statement x = y, each
predicate on x in the incoming state is transformed to a correspond-
ing predicate on y. We refer the reader to Reference [10] for details
of the XYLEM analysis.
The initial predicate 〈v = null〉 is called the root predicate
and the dereferenced variable v the root reference. The goal of
procedure analyzeMethod is to identify null assignments to the
root reference. At an assignment statement v = w, the root refer-
ence is updated to w and the root predicate becomes 〈w = null〉.
analyzeMethod removes an element (s, Γ) from the worklist, and
uses the dispatcher, passed in as a parameter, to select the predeces-
sors of s (lines 6–7). In the original XYLEM analysis, the procedure
selects all predecessors of s. If a predecessor is neither the entry
node of the method nor a call node (line 9), the procedure com-

algorithm ComputeNPA

input sr Dereference of variable v for which to compute NPAs
D Dispatcher that selects the predecessors of a node to traverse

global N NPAs for sr

CS call stack of methods
σ(s, Γ) summary information at a call site s that maps an

incoming state Γ to an outgoing state
begin
1. Γ = {〈v = null〉,〈this 6= null〉}
2. analyzeMethod(sr , Γ)
3. returnN

procedure analyzeMethod (s: starting statement, Γ: state)
4. initialize worklist with (s, Γ)
5. while worklist 6= ∅ do
6. remove (s, Γ) from worklist
7. preds = get predecessors of s from D
8. foreach sp in preds do
9. if sp is not the entry and not a call then
10. compute Γ′ for the transformation induced by sp

11. if root-predicate(Γ′) = 〈true〉, add sp toN // found NPA
12. add (sp, Γ′) to worklist if not visited
13. else if sp is a call that invokesM then

14. Γ′ = σ(sp, Γ)
15. if Γ′ = ∅ then // no summary exists
16. pushM onto CS
17. Γ′ = map Γ to the exit ofM
18. analyzeMethod(exit node ofM , Γ′)
19. pop CS
20. Γ′ = map state at the entry ofM to sp

21. add Γ′ to σ(sp, Γ)
22. add (sp, Γ′) to worklist if not visited
23. if CS = ∅ then // method not being analyzed in a specific context
24. cs = get call sites from D
25. foreach sc in cs do
26. Γ′ = map Γ to sc

27. analyzeMethod(sc, Γ′)
end

Figure 3: The XYLEM analysis extended to use stack traces to

support our fault-localization approach.

putes the state transformation induced by sp (line 10). When the
procedure encounters a null assignment to the root reference, it has
found an NPA—the root predicate becomes 〈null = null〉, which
is represented as 〈true〉—and the algorithm adds sp to the set of
NPAs (line 11).
At a call site, the procedure uses summary information, which

maps an incoming state Γ to an outgoing state Γ′ to which the
called method transforms Γ. Using the summary information, the
procedure avoids analyzing a method multiple times for the same
state. On reaching a call site, the procedure first checks whether
summary information exists for the current state (lines 13–15). If
no summary exists, the algorithm descends into the called meth-
ods to analyze them (lines 16–20). It uses a call stack to ensure
context-sensitive processing of called methods.3 After returning
from the called method, the analysis saves the summary informa-
tion for reuse in subsequent traversals (line 21).
Consider the backward path (30, 28, 27, 33a, 32, 5a, 4b, 26, 25)

traversed by the algorithm for the dereference of string1 at state-
ment 30 in RTEExample (see Figure 1). Statement 25 transforms
the root predicate 〈string1 = null〉 to 〈string2 = null〉.
Continuing backward from 25 along path (24, 4a, 3, 2b, 16, 14,
13), the algorithm reaches statement 13, which transforms predi-
cate 〈string2 = null〉 to 〈true〉; the algorithm, thus, identifies
statement 13 as an NPA.

3
A context-sensitive analysis propagates states along interprocedural paths
that consist of valid call–return sequences only—the path contains no pair
of call and return that denotes control returning from a method to a call site
other than the one that invoked it.

157

Figure 4: The two phases of the application of our approach to null pointer exceptions.

algorithm FaultLoc

input P program
ST stack trace for execution E

output Adefinite definite NPA for E
Apossible possible NPAs for E
Amaybe maybe NPAs for E
Rmaybe maybe NPRs for E

begin
// Phase 1 analysis: Identify definite and possible NPAs

1. let sr(E) be the NPR for E
2. let Dcs be a dispatcher that selects the caller in ST for a method
and all CFG predecessors of a node

3. Nd = computeNPA(sr(E),Dcs)
4. if |Nd| = 1 then Adefinite = Nd; else Apossible = Nd

// Phase 2 analysis: Identify maybe NPAs and NPRs
5. let Da be a dispatcher that selects all callers of a method and all
CFG predecessors of a node

6. Ns = computeNPA(sr(E),Da)
7. Amaybe = Ns − Nd

8. if |Adefinite | = 1 then
9. let sa be the NPA in Adefinite

10. perform a forward analysis from sa to identify reachable
dereferences R; mark traversed nodesN

11. let Dt be a dispatcher that selects nodes inN
12. foreach sr in R do

13. N = computeNPA(sr ,Dt)
14. ifN contains sa then
15. Rmaybe = Rmaybe ∪ sr

end

Figure 5: Algorithm for performing Phase 1 and Phase 2 anal-

yses of our approach.

On reaching the entry to the method, the algorithm considers
calling methods. The algorithm uses the dispatcher to determine
which methods to consider (line 24). For the original XYLEM anal-
ysis, analyzeMethod is recursively called on each caller of the
current method (lines 25–27).

3.3 Our Two-phase Algorithm
Figure 4 presents an overview of the application of our approach
to support fault localization and fault repair for Java null pointer ex-
ceptions. Phase 1 inputs a program and the stack trace from a failed
execution, E , of that program in which a null pointer exception
was raised. This phase performs a backward analysis, driven by
the stack trace, to identify and output definite and possible NPAs.
Phase 2 of the approach also inputs the program and stack trace for
E , along with the NPAs identified in Phase 1. This phase performs
two analyses: a backward analysis to identify and output maybe
NPAs; and a combined forward and backward analysis to identify
and output maybe NPRs. Both phases of the approach leverage the
XYLEM analysis.
Figure 5 presents the algorithm that performs the Phase 1 and
Phase 2 analyses of our approach. Given a programP and the stack
trace ST for execution E , the algorithm computes and returns the

definite NPA, the possible NPAs, the maybe NPAs, and the maybe
NPRs for E . This section discusses each of these phases in turn.

3.3.1 Phase 1: Identifying definite and possible NPAs

To identify definite and possible NPAs for the exception raised
at sr(E) for execution E , Phase 1 leverages the modified XYLEM
analysis. We refer to the NPAs computed by the XYLEM analysis
as static NPAs and the NPAs computed by the stack-trace-guided
version of the analysis as dynamic NPAs.
In Phase 1 (lines 1–4), the algorithm computes dynamic NPAs

by invoking ComputeNPA with a dispatcher Dcs that guides the
analysis along the call chain contained in the stack trace.
Lines 23–27 of ComputeNPA (Figure 3) illustrate the stack-trace-

guided steps of the analysis. If the current method is not being
analyzed in a specific context, the algorithm examines the stack
trace and identifies the call site into which it ascends. For exam-
ple, when the algorithm is invoked for execution 1 shown in Ta-
ble 1, ComputeNPA starts traversal from statement 30. On reaching
the entry of method3(), it ascends to call site 33a in method4()
only—it does not ascend to call site 8a in main(). On reaching the
entry of method4(), it ascends to call site 5a; finally, it identifies
the null assignment at statement 13. For another example, when in-
voked with the stack trace for execution 2, the analysis ascends to
call site 8a from the entry of method3(). At node 7b, it descends
into method1() and identifies NPAs 19 and 21.
At the end of Phase 1 of our algorithm, there is either one defi-

nite NPA or a set of possible NPAs identified (line 4 in Figure 5).
Consider again Table 1. For execution 1, only one dynamic NPA
(statement 13) is computed; therefore, that NPA is a definite NPA.
For execution 2, two dynamic NPAs (statements 19 and 21) are
computed; thus, those NPAs are possible NPAs.
The type of dynamic information that is available about the fail-

ing execution affects the accuracy of our approach. With more
detailed dynamic information, the approach will compute fewer
possible NPAs. For example, for executions 2 and 3 in Table 1,
the stack traces contain insufficient information for FaultLoc to
determine which branch from condition statement 18 was taken.
However, if branch traces were available for these executions, the
algorithm would classify statement 19 as the definite NPA for exe-
cution 2 and statement 21 as the definite NPA for execution 3.

3.3.2 Phase 2: Identifying maybe NPAs and NPRs

To identify maybe NPAs for the exception raised at sr(E), and
maybe NPRs for the definite NPA at sa(E), Phase 2 of FaultLoc
(lines 5–15) again leverages the XYLEM analysis.
First, the algorithm uses the XYLEM analysis—passing in a dis-

patcher Da that returns all callers of a method and all CFG pre-
decessors of a node—to identify static NPAs (lines 5–6). The al-
gorithm computes the statements in the set difference between the
static and dynamic NPA sets; these statements constitute the maybe

158

NPAs (line 7). For example, for execution 1 of RTEExample, the
dynamic NPA set contains statement 13 only; the static NPA set of
statement 30 includes statements 13, 19, and 21. The difference
of the two sets (statements 19 and 21) forms the maybe NPAs for
execution 1.
Next, the algorithm identifies maybe NPRs (for a definite NPA

sa) in two steps. In the first step (line 10), the algorithm performs a
forward analysis, starting at sa, to identify reachable dereferences
of the null value generated at sa. The algorithm marks the nodes
that are traversed during the analysis. For example, consider the
definite NPA for execution 1 of RTEExample. Starting at statement
13, the algorithm walks forward in the ICFG1 to identify statements
that may dereference string2, either directly or indirectly through
transitive assignments and parameter passing. In this step, the algo-
rithm identifies statements 22 and 29 as the reachable dereferences.
In the second step (lines 12–15), for each NPR identified in
the first step, the algorithm leverages the backward path-sensitive
XYLEM analysis with the modification that it constrains the analy-
sis (using dispatcherDt) to follow along only those paths that were
traversed in step 1. If for an NPR sr , sa is identified as an NPA
during the backward analysis, the algorithm adds sr to the set of
maybe NPRs for E .
Continuing with the example of execution 1, the algorithm in-
vokes the XYLEM analysis once each for statements 22 and 29.
When executed for statement 22, the analysis identifies statement 13
as an NPA. When executed for statement 29, the analysis—because
it is path-sensitive—does not identify statement 13 as an NPA.
On traversing edge (28, 29), the analysis collects the predicate
〈val > 1〉. Eventually, the analysis reaches statement 16, which
has two predecessors (statements 14 and 15). Following back along
the in-edge from statement 15, the algorithm encounters the as-
signment of a new object to string2, which invalidates the root
predicate 〈string2 = null〉. Along edge (14, 16), the predicate
〈val ≤ 1〉 is generated, which also causes the state to become
inconsistent. Therefore, the analysis traverses no further.
The benefit of the two-step approach for computing maybe NPRs
is that the second step, using the XYLEM analysis, can potentially
filter out infeasible reachable dereferences that may be identified in
the first step.
Note that Phase 2 computes maybe NPRs for only the definite
NPA (if any) that was identified in Phase 1. If Phase 1 computes
possible NPAs, the developer would first want to identify which
of those possible NPAs definitely caused the exception, and then
compute the maybe NPRs for that NPA.

4. EVALUATION
To evaluate our approach, we performed both an analytical and
an empirical study of it. This section first presents the analytical
evaluation, then presents the empirical study, and finally, discusses
the limitations and threats to the validity of the evaluation.

4.1 Analytical Study of Our Technique
The goal of this study is to compare our approach with other ap-
proaches that locate faults or provide context information for Java
null pointer exceptions to determine (1) the differences in the NPA
information that they compute and (2) the relative expense involved
in computing these NPAs.
To accomplish this goal, we considered the different patterns
of occurrences of definite, possible, and maybe NPAs. For each
pattern, we determined (1) which of the NPAs could be identified
by a path-sensitive, context-sensitive static analysis [10] alone, (2)
which of the NPAs could be identified using the stack trace alone,
and (3) which of the NPAs could be identified by our technique that

combines the two approaches. In cases where different approaches
computed the same information, we also considered the relative
costs of computing the NPAs. Note that none of the existing tech-
niques provide maybe NPR information. Thus, we did not compare
our maybe-NPR analysis with others.
We considered patterns based on four aspects of the NPAs. The

first three are the types of NPAs (definite, possible, or maybe),
where for each type, there can be no NPAs or some number of
NPAs. The fourth is whether the NPA occurs in a method in the
stack trace. With these four aspects of NPAs, there are 16 configu-
rations. Eight of them cannot occur. The four that have a definite
NPA and possible NPAs as part of the configuration cannot occur
because, if a definite NPA is found, there can be no possible NPAs.
The four that have no definite NPA and no possible NPAs as part
of the configuration also cannot occur because, if a null pointer ex-
ception is raised, at least one of them is always identified by the
analysis. The other eight configurations are shown in Table 2. In
the table, the first column assigns a number to each pattern. The
next three columns indicate whether NPAs of that type are identi-
fied by the analysis. The fifth column indicates whether the defi-
nite/possible NPAs occur in methods in the stack trace. The sixth
column shows what would be found using the stack trace alone, the
seventh column shows what would be found with the static analysis
alone, and the last column shows what our technique would find.
Consider Pattern 1 in which there is a definite NPA, no possi-

ble NPAs, no maybe NPAs, and no NPAs in any of the methods in
the stack trace. Examining the stack trace alone does not directly
reveal the NPA because the NPA does not occur in a method that
is in the stack trace. Moreover, the stack trace provides no infor-
mation about maybe NPAs. Static analysis alone can compute this
NPA and, because it identifies only one NPA, it also knows that
no maybe NPAs exist. If the definite NPA occurs in a stack method
(Pattern 2), the stack trace can be used to identify it. However, find-
ing the NPA by inspecting the stack trace can require significant
manual effort and the stack trace provides no information about
maybe NPAs. For Patterns 1 and 2, our stack-trace-guided tech-
nique provides the same information about NPAs that the static-
analysis approach provides. However, our technique can find this
NPA more efficiently than the static analysis because it performs
the analysis considering only the executed methods, whereas the
static analysis must consider all calling methods, and thus, poten-
tially traverses many more paths than our analysis.
In Patterns 3 and 4, there are maybe NPAs along with a defi-

nite NPA. In such cases, although static analysis can identify all
NPAs, it cannot distinguish the definite NPA from the maybe NPAs.
Therefore, it cannot identify which of the NPAs definitely caused
the null pointer exception to occur. Our technique can distinguish
the two NPA types and, therefore, can help localize the fault and
provide context information about related NPAs. In these patterns,
the stack trace provides the same information as it does for Pat-
terns 1 and 2. Thus, it may not be efficient for finding the definite
NPA and it does not help in finding the maybe NPAs.
In Patterns 5–8, there is no definite NPA. In such cases, static

analysis cannot distinguish between possible and maybe NPAs. Con-
sequently, it cannot guide developers by letting them focus on the
NPAs that could potentially have caused the null pointer exception,
while avoiding the NPAs that definitely could not have caused the
exception. The stack trace provides similar information as it does
for Patterns 1 and 2—it can help in directly finding the possible
NPAs only if the NPAs occur in methods in the stack trace.
Overall, the stack-trace approach is limited in that it cannot pro-

vide any information about the occurrences of maybe NPAs. More-
over, if the definite or possible NPAs do not occur in stack methods,

159

Table 2: Patterns of occurrences of NPAs, and whether the different NPAs can be identified using (1) only the stack trace, (2) only

the static analysis, and (3) our combined technique.
Definite/Possible

Definite Possible Maybe NPAs in a Method
NPA NPA NPA in the Stack Trace Using Only the Stack Trace Using Only the Static Analysis Using Our Combined Technique

1 Yes No No No
Does not find

Finds nothing
about Maybe(s)

Finds the Definite, Finds
that there are no Maybe(s)

Finds the Definite, Finds
that there are no Maybe(s)

Definite directly

2 Yes No No Yes Finds Definite

3 Yes No Yes No
Does not find

Finds but cannot distinguish
the Definite and Maybe(s)

Finds the Definite and
distinguishes Maybe(s)

Definite directly,

4 Yes No Yes Yes Finds Definite

5 No Yes No No
Does not find

Finds but cannot distinguish
Possible(s) and Maybe(s)

Finds and distinguishes
Possible(s) and Maybe(s)

Possible(s) directly

6 No Yes No Yes
May find
Possible(s) directly

7 No Yes Yes No
Does not find
Possible(s) directly

8 No Yes Yes Yes
May find
Possible(s) directly

the approach requires the data flow to be traced backward through
called methods to find the NPAs, which may require significant
manual effort. The static-analysis approach identifies all NPAs.
However, if it computes more than one NPA, it cannot classify the
NPA as definite, possible, or maybe. For example, if static analysis
computes two NPAs, it cannot determine whether (1) both are pos-
sible NPAs or (2) one is a definite NPA and the other is a maybe
NPA. In contrast to using these approaches alone, in most cases, our
technique (which combines them), is more effective in locating the
NPAs that could have caused the null pointer exception. Further-
more, our technique also provides context information in the form
of NPAs that may cause the exception in other executions, and can
be useful for repairing the fault.

4.2 Empirical Study of Our Technique
To evaluate our technique empirically, we implemented it for null
pointer exceptions using the XYLEM tool, and we conducted an em-
pirical study using open-source projects and the BUGZILLA defect
reports for those projects. This section first describes our experi-
mental set up and then presents the results of the study.

4.2.1 Experimental setup

Each subject for our experiment is a pair that consists of an ap-
plication and a stack trace for a failing execution of the application.
To gather subjects for our study, we used the following process. We
browsed the BUGZILLA repository for defect reports that show oc-
currences of null pointer exceptions. Of these reports, we filtered
out those that neither listed the stack trace nor listed the code ver-
sion on which the failure was observed. For some of the reports,
the listed code revisions were unavailable for download, or, if avail-
able, the source line numbers did not match the line numbers that
appeared in the stack trace; we filtered out such reports as well. We
also filtered out a report if the stack trace contained native methods
or the JDK API methods.4 Table 3 lists the 13 executions—(project
release, BUGZILLA ID) pairs—that we used for the study. The sizes
of the applications in terms of the number of nodes in the ICFG1

vary from approximately 3,200 for NanoXML to over 185,000 for
Ant-1.6.5.5

We implemented our approach using the XYLEM tool [10], which
implements the null-dereference analysis described in Section 3.2.

4
Although we browsed the BUGZILLA repository extensively for several
projects, we filtered out many of the bug reports for the reasons stated.
5
Most of the project distributions come with several jar files. We analyzed
only a subset of those jar files based on the contents of the stack traces.

The XYLEM tool uses the WALA analysis infrastructure6 to con-
struct the call graph and the ICFG. XYLEM performs the analysis
in two steps. In the first step, it performs points-to analysis, es-
cape analysis, and control-dependence analysis. In the second step,
it uses the results of the first step and performs null-dereference
analysis. In this step, given a dereference from which to start the
analysis, XYLEM performs the backward analysis to identify a path
along which a null value can flow to the dereference.
To implement the Phase 1 analysis, we extended the second step

of the XYLEM tool to use stack-trace information while perform-
ing the program traversal. To implement the Phase 2 analysis, for
the computation of maybe NPAs, we parameterized the analysis so
that it does not return after identifying the first NPA, but performs
a comprehensive traversal for a given NPR. The implementation of
this phase currently computes all the maybe NPAs. We are imple-
menting the component of Phase 2 that computes the maybe NPRs.

4.2.2 Distribution of NPA types and patterns

The goal of this study is to determine the distribution of NPA
types and patterns for program executions in which null pointer
exceptions are thrown.
To accomplish this goal, we analyzed each execution using the

extended XYLEM tool and computed definite, possible, and maybe
NPAs. We also identified the NPAs that occurred in methods in the
stack traces. Table 3 presents the data that we collected. The ta-
ble shows, for each subject, a subject number, the subject version
and bug number (columns 1–2), and the number of definite, pos-
sible, and maybe NPAs (columns 3–5) that were computed. Col-
umn 6 lists the number of definite and possible NPAs that occurred
in stack methods, and column 7 shows the pattern of occurrence of
the NPAs (Table 2 lists the patterns).
We highlight what the data indicate about the applicability of the

three techniques for locating faults and context information: static
analysis, stack trace, and our approach.
For five of the 13 executions, for which static analysis computes

more than one NPA, our approach provides the benefit of distin-
guishing definite/possible NPAs from maybe NPAs. For example,
for execution 4, our approach classifies the three NPAs that static
analysis computes as one definite and two maybes. Similarly, for
execution 8, our approach classifies the two NPAs as one definite
and one maybe. Static analysis cannot distinguish the NPAs that
it computes. Thus, in such cases, using our approach, the devel-
oper would know which NPA definitely caused the exception and,

6
http://wala.sourceforge.net

160

Table 3: Distribution of NPA types for our subjects.
Definite/

Possible NPAs
in a Method

Subject Definite Possible Maybe in the Pattern
Project release Bug NPAs NPAs NPAs Stack Trace type

1 Ant 1.5 10360 1 0 0 0 1

2 Ant 1.5.1 15994 1 0 0 1 2

3 Ant 1.6.0 25826 1 0 0 1 2

4 Ant 1.6.2 31840 1 0 2 1 4

5 Ant 1.6.3 34878 0 2 0 0 5

6 Ant 1.6.5 38622 1 0 0 0 1

7 Fop 0.92beta 39553 1 0 0 1 2

8 NanoXML – 1 0 1 1 4

9 Tomcat 5.0.18 27077 1 0 0 1 2

10 Tomcat 5.0.25 29688 1 0 2 1 4

11 Tomcat 5.0.28 32130 1 0 0 1 2

12 Tomcat 5.5.12 37425 0 2 0 0 5

13 Xerces 1.3.0 2252 1 0 0 0 1

therefore, could focus on that NPA to determine why the null value
reached the NPR. Using static analysis alone, the developer would
have to identify first which of the static NPAs is the definite NPA,
before investigating further why the exception occurred.
For the remaining eight executions, static analysis computes one
NPA—these correspond to Patterns 1 and 2. For these cases, our
approach provides the same information about NPA occurrences
as static analysis. For five of the executions, the definite/possible
NPAs do not appear in a stack method. For such cases, the approach
of inspecting stack methods would require manual tracing of data
values back through called methods to identify the NPAs.

4.2.3 Effort required to locate NPAs

The goal of this study is to illustrate the effort that might be
required, using alternative approaches, to locate the NPA that as-
signed the null value.
To do this, we discuss two example executions from Table 3.
First, consider execution 5 from the table. For this execution, our
approach identifies two possible NPAs and no maybe NPAs (Pat-
tern 5). The stack trace of that execution shows that the null deref-
erence occurs at line 875 in method checkIncludePatterns()
of class DirectoryScanner:

...ant.DirectoryScanner.checkIncludePatterns 875

...ant.DirectoryScanner.scan 808

...ant.types.AbstractFileSet.getDirectoryScanner 358

...ant.taskdefs.Copy.execute 404

...ant.UnknownElement.execute 275

...ant.Task.perform 364

...ant.Target.execute 341

...ant.Target.performTasks 369

...ant.Project.executeSortedTargets 1216

...ant.Project.executeTarget 1185

...ant.helper.DefaultExecutor.executeTargets 40

...ant.Project.executeTargets 1068

...ant.Main.runBuild 668

...ant.Main.startAnt 187

...ant.launch.Launcher.run 246

org.apache.tools.ant.launch.Launcher.main 67

Line 875 of checkIncludePatterns() contains a dereference
of a variable that is assigned the return value from a method:

checkIncludePatterns()

[874] File f = findFile(...);

[875] if (f.exists()) {

To locate the NPA, the developer would have to trace back into
the called method findFile() to see whether the method may
return a null value. Method findFile() in turn returns the value
from another method. On examining method findFile2(), the
developer would find that it can return null values at two statements.

findFile()

[1504] return findFile2(...);

findFile2()

[1522] if (!base.isDirectory()) {

[1533] return null;

...

[1541] return null;

Next, consider execution 10 from Table 3 for which our approach
computes a definite NPA (that is on the stack trace), and two maybe
NPAs (Pattern 4). The partial stack trace for the execution, along
with the source line containing the NPR, are shown below:

...catalina.startup.HostConfig.deployDescriptors 445

...catalina.startup.HostConfig.deployApps 427

...catalina.startup.HostConfig.check 1064

...catalina.startup.HostConfig.lifecycleEvent 327

...catalina.util.LifecycleSupport.fireLifecycleEvent 119

...catalina.core.StandardHost.backgroundProcess 800

...

deployDescriptors(..., String[] files)

[445] for (int i=0; i<files.length; i++)

The code for deployDescriptors() shows that the statement
at line 445 dereferences a formal parameter. The stack trace illus-
trates that deployDescriptors() is called from deployApps(),
which passes in a null value for the formal parameter files. Line
426 shown below returns the value from a JDK API method, which
in this execution was null.

deployApps()

[426] String configFiles[] = configBase.list();

[427] deployDescriptors(configBase,configFiles);

In this case, the stack trace contains sufficient information to
identify the definite NPA, and the developer does not have to nav-
igate to other methods (that are not on the stack) to trace the flow
of the null value. However, the stack provides no information that
there are two other callers of deployDescriptors() that can also
potentially pass in null values, as shown in the following code:

deployWARs()

[556] deployDescriptors(configBase(),configBase.list());

start()

[970] String configFiles[] = configBase.list();

[971] deployDescriptors(configBase,configFiles);

One of the key strengths of our approach is that it identifies con-
text information, in the form of maybe NPAs and maybe NPRs, that
can help the developer in fixing a fault.

4.3 Discussion
Our evaluation shows that, for the subjects that we studied, our

two-phase algorithm, applied to null pointer exceptions, can be
more effective in locating the null pointer assignment than using
either static analysis or the stack trace alone.
However, there are several threats to the validity of the evalua-

tion. Threats to internal validity arise when factors affect the de-
pendent variables without the researchers’ knowledge. In our case,
our implementation could have flaws that would affect the accuracy
of the results we obtained. However, we are confident in the results
we obtained for two reasons. First, our implementation is based
on the XYLEM tool [10] that has been used by industrial practition-
ers, and has been used for significant experimentation. Second, we
manually checked most of the results to verify their correctness.
Threats to external validity arise when the results of the experi-

ment cannot be generalized to other situations. One external threat
concerns the ability to generalize the results for null pointer excep-
tions, based on the subjects we used. In our study, we used 13 pro-
grams and runtime exceptions, and thus, we are unable to conclude
that our results will hold for programs in general. In the current im-
plementation, when a reference that is retrieved from a collection
class (e.g., Hashtable) causes a null pointer exception, we report

161

the statement that retrieves the reference from the collection as an
NPA. Future extensions to our tool could perform additional anal-
ysis to identify the statements where the null value was generated
and then added to the collection. Furthermore, our implementation
does not handle reflection. Future enhancements could incorporate
dynamic information from the stack trace to guide static analysis
in resolving reflection. With some of these improvements to our
implementation, studies can be performed on more and varied pro-
grams to validate our results.
Another external threat concerns the ability to generalize the re-
sults for other types of runtime exceptions that are based on as-
signment and flow of an incorrect value. Our implementation, and
thus our empirical evaluation, applies to null pointer exceptions
only. Therefore, we cannot definitively state that our approach will
achieve the same results when applied to other types of exceptions.
Only experiments with implementations of other such analyses can
answer this question.

5. RELATEDWORK
There is much research in the area of locating program faults that
is related to our work.
Many techniques have been developed for finding common bugs,
including null dereferences. Fähndrich and Leino [3] propose an
approach to retrofit languages, such as Java, by declaring two types
of references—possibly-null and non-null. The non-nullity of a ref-
erence is enforced by the type system at compile time, through the
use of object invariants. Thus, their technique addresses the null-
dereference problem by modifying existing languages to incorpo-
rate new reference types. In contrast, our technique is applicable
to Java without modification. Furthermore, our technique provides
context information to assist in repairing the fault.
Xie and Engler [17] propose an approach that uses redundancy
checkers to find hard errors, such as null dereferences, potential
deadlocks, and security violations, that may crash a system. Their
approach first finds redundancy errors using redundancy checkers,
and then finds correlations between these errors and other hard er-
rors using a statistical technique. Unlike their approach, our tech-
nique uses a combination of static and dynamic analysis to assist
not only in locating the faults, but also in repairing the faults. Thus,
it avoids the limitations of a purely static approach.
Other techniques use static error-detection methods that analyze
a program to detect potential faults without executing it. Hove-
meyer, Spacco, and Pugh [7] use forward interprocedural dataflow
analysis and annotations to find bugs related to null-pointer deref-
erences. Evans [2] created LCLINT to incorporate annotations that
help in detecting errors, such as uses of dead storage and dangerous
aliasing, in C programs. ESC/JAVA [4] is a compile-time program
checker that finds inconsistencies and potential runtime errors be-
tween the programmer’s design decisions expressed in an annota-
tion language and the actual code. Unlike our technique, the above
techniques require user-provided program annotations. Thus, the
quality of the fault localization they provide depends on the anno-
tations. Furthermore, their approaches provide no context informa-
tion for repairing the fault.
Loginov and colleagues [9] present a sound null-dereference anal-
ysis, based on abstract interpretation, that gradually expands the
interprocedural scope of analysis to establish the safety of a deref-
erence. Unlike their approach, our approach performs a backward
analysis (starting at a point of failure) that is guided by the stack
trace, and provides context information to assist with fault repair.
PREFIX [1] performs accurate interprocedural analysis for de-

tecting a broad class of memory errors, including null dereferences,
in C programs. The technique features a bottom-up analysis of pro-

cedures to compute summaries, and a forward path-sensitive anal-
ysis within each procedure that prunes out infeasible paths. How-
ever, that approach is purely static. Thus, unlike our technique,
it suffers from the common problems of purely static approaches.
Also, it does not compute specific context information that can help
in repairing a fault.
Rountev, Kagan, and Gibas [12] discuss imprecision of static

analysis and propose approaches for evaluating such imprecision.
A common approach for addressing the imprecision problem of
static analysis is to combine static analysis with dynamic analysis.
Our technique adopts this approach—it combines the dynamically
generated information (from the stack trace) with the static analysis
performed by XYLEM.
Tomb, Brat, and Visser [15] propose a technique for finding run-

time errors in Java programs by combining static and dynamic anal-
yses. The approach performs forward interprocedural symbolic ex-
ecution to find constraints that may reveal a bug, and then attempts
to generate test cases to trigger that bug. Our approach is similar
in that it also leverages an interprocedural path-sensitive analysis.
However, our analysis is backward; it starts from a statement where
it knows that a bug has caused a failure, and it uses the available
runtime information, such as stack traces, to guide the backward
analysis. Additionally, our technique provides context information
for assistance in repairing the fault.
Hangal and Lam [6] developed a tool, DIDUCE, that uses dy-

namic program invariant detection to find the root causes of soft-
ware bugs. Their approach attempts to infer bugs by dynamic pro-
gram invariant detection but it provides no information for repair-
ing other similar bugs in the program. Furthermore, gathering of
dynamic invariants is an expensive analysis that may not scale to
large programs. Our approach, in contrast, uses readily available,
lightweight, dynamic information—the stack trace—to locate faults.
Program slicing [16] is a widely studied technique for debug-

ging. A static program slice [16], computed with respect to the
dereferenced variable v at an NPR, identifies all statements that
could affect the value of v, which includes all NPAs. However,
the developer would be faced with the task of examining the slice
to identify the definite NPA. A dynamic slice [8], computed with
respect to the execution trace of a failing execution E , excludes
statements, and NPAs, that do not execute in E . Thus, it could
exclude some of the possible NPAs identified by our stack-trace-
guided approach. However, dynamic slicing requires the program
to be rerun, with instrumentation, on the failing inputs. Moreover,
for applications that are long-running or that use concurrency, dy-
namic slicing would not be practical. Our approach uses readily
available stack-trace information, and requires no reexecution of
the program.

6. CONCLUSION AND FUTUREWORK
In this paper, we presented a new approach for locating and re-

pairing faults that cause runtime exceptions in Java programs due to
incorrect assignment of a value that finally leads to the exception.
Our approach assists in fault localization: it performs a backward
stack-trace-guided dataflow analysis, starting at the point where the
exception was raised, to locate the source statement that is respon-
sible for the exception. Our approach also assists in fault repair:
it performs backward and forward analysis to identify other state-
ments that are related to the exception and its cause, and that should
be considered while fixing the fault that caused the exception.
We applied our approach to Java null pointer exceptions to iden-

tify three types of null pointer assignments (definite, possible, and
maybe) and one type of null pointer dereference (maybe). Our anal-
ysis is based on a static backward path-sensitive, context-sensitive

162

null-dereference analysis [10] that we modified to consider the dy-
namic, stack-trace information in performing the analysis. By us-
ing the dynamic information to guide the static analysis, our tech-
nique can achieve better results than either the static analysis or the
inspection of the stack trace alone. Our analytical study and our
empirical study support this claim.
However, as discussed in Section 4.3 there are several areas of
future work that we plan to conduct that will let us perform addi-
tional studies with a greater number, and a more diverse set, of pro-
grams and runtime exceptions. This work includes providing ex-
tensions to the analysis to include features of Java programs, such
as use of containers, libraries, and reflection. The work also in-
cludes applying our approach to other types of runtime exceptions
that are based on assignment and flow of an incorrect value.
The current implementation of our two-phase algorithm is an im-
plementation of Phase 1 to find definite and possible NPAs and
the static backward analysis component of Phase 2 to find maybe
NPAs. We have partially implemented the static forward and back-
ward analysis component of Phase 2 that will compute the maybe
NPRs. We plan to complete this implementation, and extend our
studies to include identification of these NPRs. Currently in our
empirical evaluation, we note whether the NPAs are contained in
a method that is in the stack trace. However, we cannot assess the
difficulty developers may have in locating the NPAs. Additionally,
although we report the maybe NPAs that our algorithm identifies,
we cannot assess how useful this information will be to developers
in repairing the fault. With the completion of the implementation
of our two-phase algorithm, we plan to conduct user studies to as-
sess both the difficulty in locating the NPAs and the usefulness of
the additional context information.
Identifying the NPA is a key first step in investigating the cause
of a runtime exception. After identifying the NPA, the developer
needs to understand whether (1) the NPA should not have been
reached at all in the execution; (2) if reached, the null value should
have been overwritten along the path to the NPR; or (3) the NPR
should not have been reached from the NPA. In the first case, the
fault lies before the NPA, whereas, in the second and third cases,
the fault lies along the paths between the NPA and the NPR. Thus,
developing analyses to support the developer in performing this
task is an important extension to our approach, which we plan to
address in future work.
Another aspect of our current technique is its use of the stack-
trace to guide the analysis to find the NPAs. However, in some
cases, this dynamic information is insufficient to identify the defi-
nite NPA that caused the null pointer exception. If Phase 1 of our
analysis identifies only possible NPAs and the inputs that cause the
exception are available,2 we can use those NPAs to instrument the
program to determine which of those possible NPAs was actually
executed. By executing the program again, with this lightweight
instrumentation, our technique can determine the definite NPA that
caused the exception. We plan to implement this instrumentation
technique and evaluate its efficiency.
A final area of future work involves creating effective ways to
present the results to developers. Currently, we present the results
of our analysis as plain-text output to the developer. Because of
the distributed nature of exception flow and the complexity of the
problem, textual outputs are not always easy to understand, and
an interactive visualization may help developers explore and un-
derstand the analysis results. In previous work [13], some of the
authors developed a technique for visualizing exception-handing
constructs and the related flow at three different abstract levels.
A similar interactive visualization could support developers in the
fault-localization and fault-repair process.

Acknowledgements

This work was supported in part by awards from National Sci-
ence Foundation under CCF-0429117, CCF-0541049, and CCF-
0725202, IBM by a Software Quality Innovation Faculty Award,
Key Project of Chinese Ministry of Education under 108063, and
Natural Science Foundation of Jiangsu Province China under BK-
2008124.

References
[1] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer for
finding dynamic programming errors. Software—Practice and
Experience, 30(7):775–802, 2000.

[2] D. Evans. Static detection of dynamic memory errors. In Proceedings
of the ACM SIGPLAN Conference on Programming Languages,

Design, and Implementation, pages 44–53, May 1996.

[3] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null
types in an object-oriented language. In Proceedings of the 18th
ACM SIGPLAN Conference on Object-Oriented Programming,

Systems, Languages, and Applications, pages 302–312, Oct 2003.

[4] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 234–245, June 2002.

[5] C. Fu and B. G. Ryder. Exception-chain analysis: Revealing
exception handling architecture in Java server applications. In
Proceedings of the 29th International Conference on Software

Engineering, pages 230–239, May 2007.

[6] S. Hangal and M. S. Lam. Tracking down software bugs using
automatic anomaly detection. In Proceedings of the International
Conference on Software Engineering, pages 291–301, May 2002.

[7] D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a
static analysis to find null pointer bugs. In Proceedings of the 2005
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering, pages 13–19, September 2005.

[8] B. Korel and J. Laski. Dynamic program slicing. Information
Processing Letters, 29(3):155–163, Oct. 1988.

[9] A. Loginov, E. Yahav, S. Chandra, N. Fink, S. Rinetzky, and M. G.
Nanda. Verifying dereference safety via expanding-scope analysis. In
Proeedings of the International Symposium on Software Testing and

Analysis, pages 213–223, July 2008.

[10] M. G. Nanda and S. Sinha. Accurate interprocedural null-dereference
analysis for Java. In Proceedings of the 31st International
Conference on Software Engineering, pages 133–143, May 2009.

[11] M. P. Robillard and G. C. Murphy. Static analysis to support the
evolution of exception structure in object-oriented systems. ACM
Transactions on Software Engineering and Methodology,
12(2):191–221, 2003.

[12] A. Rountev, S. Kagan, and M. Gibas. Evaluating the imprecision of
static analysis. In Proceedings of the 5th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering,
pages 14–16, June 2004.

[13] H. Shah, C. Görg, and M. J. Harrold. Visualization of exception
handling constructs to support program understanding. In
Proceedings of the ACM Symposium on Software Visualization, pages
19–28, September 2008.

[14] S. Sinha, A. Orso, and M. J. Harrold. Automated support for
development, maintenance, and testing in the presence of implicit
control flow. In Proceedings of the 26th International Conference on
Software Engineering, pages 336–345, May 2004.

[15] A. Tomb, G. P. Brat, and W. Visser. Variably interprocedural program
analysis for runtime error detection. In Proceedings of the
International Symposium on Software Testing and Analysis, pages
97–107, July 2007.

[16] M. Weiser. Program slicing. IEEE Trans. Softw. Eng., 10(4):352–357,
July 1984.

[17] Y. Xie and D. R. Engler. Using redundancies to find errors. In
Proceedings of the 10th ACM SIGSOFT Symposium on Foundations

of Software Engineering, pages 51–60, November 2002.

163

