
Efficient Regression Testing of Ontology-Driven Systems

Mijung Kim†, Jake Cobb†, Mary Jean Harrold†, Tahsin Kurc∗, Alessandro Orso†,
Joel Saltz∗, Andrew Post∗, Kunal Malhotra†, and Shamkant B. Navathe†

†College of Computing
Georgia Institute of Technology

Atlanta, Georgia, U.S.A.
{mijung.kim|jcobb|harrold|orso|kmalhotra7|sham}@cc.gatech.edu

∗Center for Comprehensive Informatics
Emory University

Atlanta, Georgia, U.S.A.
{tkurc|jsaltz|arpost}@emory.edu

ABSTRACT
To manage and integrate information gathered from het-
erogeneous databases, an ontology is often used. Like all
systems, ontology-driven systems evolve over time and must
be regression tested to gain confidence in the behavior of the
modified system. Because rerunning all existing tests can be
extremely expensive, researchers have developed regression-
test-selection (RTS) techniques that select a subset of the
available tests that are affected by the changes, and use this
subset to test the modified system. Existing RTS techniques
have been shown to be effective, but they operate on the
code and are unable to handle changes that involve ontolo-
gies. To address this limitation, we developed and present
in this paper a novel RTS technique that targets ontology-
driven systems. Our technique creates representations of the
old and new ontologies, compares them to identify entities
affected by the changes, and uses this information to select
the subset of tests to rerun. We also describe in this paper
OntoReTest, a tool that implements our technique and
that we used to empirically evaluate our approach on two
biomedical ontology-driven database systems. The results
of our evaluation show that our technique is both efficient
and effective in selecting tests to rerun and in reducing the
overall time required to perform regression testing.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids

General Terms
Algorithms, Reliability

Keywords
Regression testing; ontology-driven systems

1. INTRODUCTION
Scientific research in many areas, such as biomedicine, re-

lies heavily on the use of complex database systems. These

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’12, July 15-20, 2012, Minneapolis, MN, USA
Copyright 12 ACM 978-1-4503-1454-1/12/07 ...$10.00.

systems typically include a software layer that accesses mul-
tiple databases hosted at different sites, correlates the infor-
mation gathered from the different databases, and performs
various types of analyses on the resulting data. Often, the
key to correlating the information from the different data
sources is the use of an ontology : a formal description of
a domain in terms of the concepts within that domain and
their relationships to each other.

The existence of a unified ontology makes it easier to ag-
gregate and integrate data in a given domain, even if they
reside in different databases, to answer queries about such
data, and to share information among users of the database
system. For this reason, the use of ontologies, which was ini-
tially driven only by the need to interpret and consolidate
data on the web, has quickly become common practice in
the context of database applications (e.g., [19, 27]). Nowa-
days, ontologies are used to organize an increasing number of
data domains, such as geoscience, biological science, finance,
medical research, and healthcare delivery.

Like most software systems, ontology-driven database sys-
tems are tested to gain confidence in their behavior. How-
ever, unlike traditional software systems, tests for this kind
of system consist of queries that are submitted to the data-
base system and whose outcomes are checked against an
expected result.1 These databases and their underlying on-
tologies evolve over time because new data sources are inte-
grated, mappings are changed, and ontology terms are added
or deleted. Thus, these systems must be retested to gain
confidence that they still behave as expected. This kind
of testing, called regression testing, can be extremely expen-
sive and can consume the majority of the overall testing and
maintenance budget [5, 13,18].

One way to perform regression testing is to rerun all avail-
able tests on the new version of the system, which guaran-
tees that tests that may reveal problems in the new version
are re-executed. Although effective, this strategy is clearly
inefficient. Typically, only a subset of the existing tests is
affected by the changes and should be rerun—rerunning un-
affected tests results in unnecessary resource consumption
and, ultimately, costs. To provide a concrete example, soft-
ware engineers developing the Analytic Information Ware-
house system [1] at Emory have reported to us that running
all test queries for one of their database systems can take
multiple days. For this reason, one of the key tasks in re-
gression testing is regression test selection (RTS)—selecting
a subset of existing tests to rerun on the modified software.

1In the rest of the paper, we use the terms test, test case,
and test query interchangeably.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’12, July 15–20, 2012, Minneapolis, MN, USA
Copyright 2012 ACM 978-1-4503-1454-1/12/07 ...$15.00

320

When a large number of tests are unrelated to the changes,
and thus, irrelevant for the detection of faults caused by the
changes, RTS can provide significant savings over running
all existing tests.

Because of the importance of this problem, there is a large
body of work on RTS, and researchers have presented many
RTS techniques (e.g., [6, 11, 17, 26, 28, 31, 32]). All of these
techniques are designed for traditional software and share
a common characteristic: they focus on changes made to
the application code and do not consider changes made to
non-code components. In particular, these techniques would
not work for ontology-driven database systems, because the
changes in these systems are not in the code, but rather in
the semantics and description of the data.

In this paper, we present a novel RTS technique that over-
comes the limitations of existing RTS techniques in handling
ontology-driven systems. The technique first constructs a
graph-based representation of both the original (O) and the
modified (O′) ontologies. The technique then performs a
comparison of the two graphs to identify three sets of enti-
ties in the ontologies: entities that were added to O′, entities
that were removed from O, and entities that are affected by
the changes between O and O′. Finally, the technique uses
the results of the comparison to identify the tests that need
to be rerun on the new version of the system—those tests
associated with the affected entities.

The main benefit of our technique is that, based on the
changes in the ontology, it selects only those tests that need
to be rerun. Thus, the approach can reduce significantly the
time, the computational resources, and the cost of retesting
a system. Another benefit of our technique is that it de-
tects changes (additions and deletions) in an ontology, and
computes the effects of the changes. This information can
be provided to developers for understanding the impact of
the changes, and for assisting in creating new tests, where
needed. A third benefit of our technique is that it is scalable
to large ontologies. Thus, unlike existing differencing tech-
niques, our technique can provide developers with valuable
information about differences and their effects for real-world
ontologies.

In this paper, we also describe a prototype tool, called
OntoReTest, that implements our technique, and that
we used to assess the efficiency and effectiveness of our ap-
proach. We used OntoReTest to perform studies on sev-
eral versions of two real subjects in the biomedical domain:
a large informatics system for data warehousing of clinical
data (i2b2) [20] and an ontology for genomic information
provided by The Gene Ontology Consortium [3]. The re-
sults of our studies show that, for our subjects, our approach
is effective and can reduce considerably the number of test
queries that need to be rerun after a modification. Our re-
sults also show that the technique is efficient in that the
time required for the analysis (i.e., the construction of the
models, their comparison, and the identification of the af-
fected tests) plus the time needed to rerun the selected tests
is consistently and significantly less than the time needed to
rerun all available tests. Overall, our results provide initial
but clear evidence that our technique can reduce the overall
cost of regression testing of ontology-driven systems.

This paper makes the following contributions:

• A clear identification, definition, and discussion of the
problem of regression testing of ontology-driven
database systems.

• A novel regression-test-selection technique for ontology-
driven systems that accounts for changes in the under-
lying ontologies rather than in the code.

• A prototype tool, OntoReTest, that implements the
technique, and studies, performed using OntoReTest
on two systems in the biomedical domain, that show
the effectiveness and efficiency of the technique.

2. ONTOLOGIES AND MOTIVATION
In this section, we present background on ontologies and

illustrate them with an example. We also present a use-case
scenario that motivates the need for our technique.

2.1 Ontologies
An ontology represents knowledge in a domain by present-

ing a common vocabulary that is shared in that domain.
The knowledge in an ontology is represented as (1) a set of
classes that specify the concepts about the domain and (2)
relationships among those classes [7]. There are four main
components of an ontology: classes, properties, restrictions,
and individuals [22]. We describe each component, and il-
lustrate it with an example of a pizza ontology,2 represented
as graph in Figure 1.

A class describes a concept in a domain. For our exam-
ple, the nodes in Figure 1 represent classes in the pizza do-
main: Pizza and Topping. Each class can have subclasses.
In Figure 1(a), class-subclass relationships are represented
by solid directed edges between class nodes. For example,
VeggiePizza is a subclass of Pizza.

A property describes a relationship between classes. (A
property can also describe a relationship between individu-
als, as we discuss later in this section.) For example, Pizza
and Topping in Figure 1(a) are linked by a property, hasTop-
ping, represented as a dashed directed edge labeled with the
name of the property.

A restriction is a constraint that a class must satisfy.
In our example, restrictions are represented as dashed di-
rected edges labeled with the name of the referenced prop-
erty and with the constraint type in square brackets. For
example, according to Figure 1(a), Margherita must satisfy
two restrictions: hasTopping[some] Tomato and hasTop-

ping[some] Mozzarella. These restrictions reference the
hasTopping property, which links Pizza and Topping, and
specify that Margherita must have the hasTopping property
for at least one (some) instance of Tomato and at least one
(some) instance of Mozzarella. That is, Margherita has
at least one Tomato topping and at least one Mozzarella

topping. Other constraint types are represented similarly.
An individual corresponds to an instance of a class. In-

dividuals of a class have the same set of attributes (i.e.,
properties or restrictions) as the class to which the indi-
viduals belong. For example, a restaurant may sell a pizza
named “Mushroom Deluxe,” which is an individual of the
class MushroomPizza in Figure 1(b). “Mushroom Deluxe”
shares the attributes with MushroomPizza—it is an instance
of VeggiePizza as well as Pizza and includes a restriction
hasTopping[some] for an individual of Mushroom. Because
individuals can change only if the class to which they be-
long changes, representing them in our graph would only
add redundant information.

2The pizza ontology is a widely-used for ontology tutorials;
it is publicly available at www.co-ode.org/ontologies/pizza/.

321

(a) (b)

Figure 1: Example pizza ontology, represented as a graph G (a), and a changed version of the pizza ontology,
represented as a graph G′ (b).

Table 1: Example set of tests for the pizza ontology
Test Entities

t1 There are at least 3 veggie pizzas VeggiePizza
t2 Pizza must include mushroom pizza Pizza, MushroomPizza
t3 Mushroom pizza must have mozzarella toppings MushroomPizza hasTopping [some] Mozzarella
t4 There must be at least 1 veggie topping VeggieTopping

So far, we have discussed the main components of an on-
tology. In this paper, we do not discuss other minor com-
ponents, such as sub-properties, datatype properties, and
cardinality restrictions, that our approach can handle but
that would unnecessarily complicate the discussion.

Table 1 shows an intuitive description of four tests that
may be used to test a system based on the pizza ontology,
along with entities in the ontology with which they are as-
sociated. In the table, the first column (Test) lists the test
number and its description, and the second column (Enti-
ties) shows the entities in the pizza ontology that are asso-
ciated with the test. As discussed in Section 1, actual tests
would consist of queries to the database together with ex-
pected query results. Test t1, for instance, would consist of
a query that counts the number of VeggiePizza instances
in the database system, including the instances of the sub-
classes of VeggiePizza, such as the following:

SELECT COUNT(*) AS result FROM orders WHERE type

IN (SELECT term FROM terms WHERE term=’VeggiePizza’

OR ancestor=’VeggiePizza’)

Test t1 would check that the value of result is at least 3.

2.2 Motivating Example
Ontologies change over time, and when changes in an on-

tology occur, an ontology-driven system must be retested.
Consider again the pizza ontology, represented as graph G
in Figure 1(a). Consider also the changed version of this
ontology, represented as graph G′ in Figure 1(b). As the
figure shows, there are two changes from G to G′: (1) Mush-
roomPizza is a subclass of Pizza in G and a subclass of
VeggiePizza in G′; and (2) the MushroomPizza hasTop-

ping[some] Mozzarella restriction does not appear in G′.
For the first change, because MushroomPizza has been

moved, VeggiePizza now has two subclasses in G′. How-
ever, Pizza still has three subclasses: VeggiePizza, Mar-

gherita, and MushroomPizza. Moreover, MushroomPizza

has no subclass in G or G′. Thus, for this change from
G to G′, only tests associated with VeggiePizza (i.e., t1)

may behave differently with the changed ontology because,
although MushroomPizza has been moved, MushroomPizza

and Pizza have the same subclasses in G and G′. There-
fore, any tests associated with MushroomPizza (i.e., t2) will
return the same results if run on a database that uses the
new ontology and on one that uses the original ontology.
Therefore, t2 does not need to be rerun.

For the second change, the deletion of the restriction Mush-

roomPizza hasTopping[some] Mozzarella means that tests
associated with this restriction (i.e., t3) may behave dif-
ferently and must be rerun. Finally, because there are no
changes to VeggieTopping between G and G′, tests associ-
ated with VeggieTopping (i.e., t4) do not need to be rerun.

In summary, for the changes to the pizza ontology shown
in Figure 1, only t1 and t3 must be rerun.

3. ALGORITHM
In this section, we present our algorithm for selecting tests

to rerun based on a changed ontology.

3.1 Overview
Our algorithm, SelectTests (Algorithm 1), inputs a

graph, G, that represents the original ontology O, and a
graph, G′, that represents the changed ontology O′. An
ontology graph3 is a set of nodes N and a set of directed
edges E. A node n ∈ N represents a class. A subclass edge
represents a subclass relationship, and is indicated as es =
(s, t) ∈ E, where s, t ∈ N are the source and target of the
edge, respectively. A property edge represents either a prop-
erty or a restriction, and is indicated as ep = (s, t, p) ∈ E,
where s, t ∈ N are the source and target nodes, respectively,
and p is the property name along with any restrictions. Se-
lectTests also inputs a matrix, M , that associates tests
in T with entities in O. In general, matrix construction can
be performed automatically by parsing tests and identifying

3Because there is no standard model for representing ontolo-
gies, for our work, we created a graph representation that
supports explicit representation of ontologies.

322

Algorithm: SelectTests

Input :
G, graph of the original ontology, O
G′, graph of the changed ontology, O′

M , matrix that maps G→ T
Output:
ADD, set of added nodes and property edges in G′

DELETE, set of deleted nodes and property edges in G
T ′, set of tests selected from T

Use :
PropOut(s), property edge triples 〈s, t, p〉 from node s
Succ(n), set of successor nodes of n
DescendG(n) and DescendG′(n′), set of descendants

via subclass edges of node n and n′ in G and G′

AFFECT, set of affected nodes and property edges in G
begin
// Phase 1: Compute descendants of nodes

1 foreach node n ∈ G and n′ ∈ G′ in reverse
topological order on the subclass edges do

2 DescendG(n)←Succ(n)
⋃

s∈Succ(n) DescendG(s)

3 DescendG′(n′)←Succ(n′)
⋃

s′∈Succ(n′) DescendG′(s′)
end
// Phase 2: Identify changes,compute effects

4 ADD ← {〈n,−,−〉 : n ∈ G′} // Initialize ADD
5 DELETE ← ∅ // Initialize DELETE
6 AFFECT ← ∅ // Initialize AFFECT
7 foreach node n ∈ G do
8 if ∃n′ ∈ G′ : label(n) = label(n′) then
9 ADD ← ADD −{〈n′,−,−〉}// remove n′

10 if DescendG(n) 6= DescendG′(n′) then
11 AFFECT ← AFFECT ∪{〈n,−,−〉}

end
12 if PropOut(n) 6= PropOut(n′) then
13 DELETE ← DELETE

∪(PropOut(n)− PropOut(n′))
14 AFFECT ← AFFECT

∪(PropOut(n)− PropOut(n′))
15 ADD ← ADD ∪(PropOut(n′)− PropOut(n))

end
end

16 else // when match of n is NOT in G′

17 DELETE ←DELETE ∪{〈n,−,−〉} ∪ PropOut(n)
18 AFFECT ←AFFECT ∪{〈n,−,−〉} ∪ PropOut(n)

end
end
// Find new property edges from nodes in ADD

19 foreach 〈n′,−,−〉 ∈ ADD do
20 ADD ← ADD ∪PropOut(n′)

end

// Phase 3: Select tests from T
21 T ′ ← ∅ // Initialize T ′

22 foreach a ∈ AFFECT do
23 T ′ ← T ′ ∪ tests associated with a in M

end
24 return ADD, DELETE, T ′;

end
Algorithm 1. SelectTests

the ontology entities in the tests. In Section 4, we describe
how we constructed the matrix for our experiments.

SelectTests identifies changes from O to O′ by com-
paring G and G′. The algorithm computes three sets that
represent the changes in classes and properties: (1) ADD,
the set of entities added to O′; (2) DELETE, the set of en-
tities deleted from O; and (3) AFFECT, the set of entities
affected by the changes from O to O′. To collect informa-

tion about entities that are related to ontology changes, Se-
lectTests represents nodes and edges as triples. A triple,
〈n,−,−〉, where n is the node and the second and third
elements of the triple are empty, represents a node, which
corresponds to a class in an ontology. A triple 〈s, t, p〉, where
s is the source node of property edge p and t is the target
node of property edge p, represents a property edge, which
corresponds to a property or a restriction in an ontology.

As the example in Section 2.2 illustrates, a node can be
affected directly or indirectly by changes, and the algorithm
must select tests associated with both kinds of effects. If a
node itself is deleted, there is a direct effect. If the set of
subclasses of a node has changed because of the addition or
deletion of other nodes, there is an indirect effect. A change
in the set of subclasses is an indirect effect because it po-
tentially changes the respective results of tests associated
with the parent class. To find all data instances of a given
class from an ontology, the data source must be searched for
instances of any subclasses because they are, by definition,
instances of the given class. After computing the changes,
the algorithm uses AFFECT and M to select T ′, which con-
tains those tests in T that need to be rerun. The algorithm
then returns ADD, DELETE, and T ′

For simplicity (as discussed in Section 2.1), in this paper
we focus only on the main components of an ontology. Our
algorithm can easily handle the ontology components that
we do not discuss, such as cardinality restrictions, by repre-
senting them as additional nodes and edges in the graph.

SelectTests consists of three phases. In Phase 1, for
each node n in G and G′, SelectTests computes
DescendG(n) by collecting all descendants of n through sub-
class edges. These sets of descendants will be used in Phase
2 to compute entities affected by changes. In Phase 2, Se-
lectTests identifies the changes between G and G′, and
computes the effects of the changes in nodes and property
edges. In Phase 3, SelectTests simply selects tests asso-
ciated with affected entities in G using the matrix M .

3.2 Algorithm Details
In this section, we present the details of SelectTests and

illustrate them with an example.

3.2.1 Phase 1: Compute Descendants
SelectTests computes descendants of each node n in G

and G′, DescendG and DescendG′ , respectively (lines 1-3).
The algorithm performs this computation by traversing G
and G′ in a reverse topological order4 on the subclass edges
in the graphs beginning with the leaf nodes.

For each node n, Descend(n) is the union of the successors
of n and Descend of all successors of n, where the succes-
sors of n are the target nodes of outgoing subclass edges from
n. SelectTests requires only one iteration of this compu-
tation because the subgraph induced by subclass edges is
acyclic.

To illustrate, consider Figure 2, which shows graphs G
and G′ that represent an original ontology and a changed
version of that ontology, respectively. Suppose that Se-
lectTests computes DescendG using the reverse topolog-
ical order for G (10, 9, 8, 3, 7, 6, 5, 4, 2, 1, root). In this case,
DescendG(10) is empty because node 10 has no successors.

4A reverse topological ordering of a directed graph is a linear
ordering of the graph’s nodes such that for every pair of
edges (i, j), j appears before i in the ordering.

323

(a) (b) (c)

Figure 2: Graph G for ontology O (a), graph G′ for a changed version of O (b), and test matrix M (c).

Table 2: Descendants of selected nodes in Fig-
ure 2(a) and (b)

n DescendG(n) DescendG′(n)

1 {2, 3, 4, 5, 6} {2, 3, 4, 5, 6}
2 {4, 5, 6} {}
3 {} {4, 5, 6}
4 {5 ,6} {5, 6}
5 {} {}
6 {} {}

Likewise, DescendG(9) is also empty. DescendG(8) is the
union of node 8’s successors ({9, 10}) and the descendants
of node 8’s successors ({}). As a result, DescendG(8) =
{9, 10} ∪ DescendG(9) ∪ DescendG(10) = {9, 10}. For an-
other example, node 2 has only node 4 as a successor, but
DescendG(4) = {5, 6}. Thus, DescendG(2) = {4, 5, 6}. Ta-
ble 2 shows the descendants for nodes (1, ..., 6) in G and
nodes (1, ..., 6) in G′.

3.2.2 Phase 2: Identify Changes,Compute Effects of
Changes

SelectTests supports two types of local changes: addi-
tion and deletion. The algorithm computes a set of added
entities (ADD), a set of deleted entities (DELETE), and
a set of affected entities (AFFECT). Line 4 initializes ADD
with the triples for each node in G′; the algorithm will subse-
quently remove those nodes that exist both in G and G′, and
the remaining nodes in ADD will represent those added to
G′. Line 5 initializes DELETE with an empty set; the algo-
rithm will add those nodes that exist in G but not in G′. Line
6 initializes AFFECT with an empty set; the algorithm will
add those nodes that are affected by the changes. For the
example shown in Figure 2, after lines 4-6 of the algorithm,
ADD is {〈root,−,−〉, 〈1,−,−〉, ..., 〈11,−,−〉}, whereas DE-
LETE and AFFECT are both {}.

After initialization, SelectTests visits each node n in G
(line 7) and attempts to find n’s match by finding n′ ∈ G′

whose label is the same as n’s. If n′ is found (line 8), the
algorithm first removes 〈n′,−,−〉 from ADD (line 9) so that
it is not treated as an added node. Then, in line 10, the al-
gorithm compares DescendG(n) and DescendG′(n′), which
were computed in Phase 1. If they differ, the algorithm adds
〈n,−,−〉 to AFFECT (line 11). In this case, although n and
n′ match with the same label, n is affected because the dif-
ference between DescendG(n) and DescendG′(n′) reflects
changes in the subclasses.

To illustrate, consider again Figure 2. For simplicity, con-
sider only the left subtree of root, which includes nodes
(1, ..., 6). Because these nodes exist in both G and G′, the
matches are found (line 8) and the nodes are removed from
ADD (line 9). Table 2 shows that only Descend(2) and
Descend(3) differ even though the location of the subtree
rooted at node 1 has changed. Despite this location change,
because DescendG(4), Descend(5), and Descend(6) are still
the same as those of DescendG′ , the algorithm does not con-
sider nodes 4, 5, and 6 as affected classes because any tests
associated with these classes will behave the same using O
or O′. Likewise, because DescendG(1) is also the same as
DescendG′(1), the algorithm does not include node 1 in AF-
FECT. Thus, the algorithm adds only 〈2,−,−〉 and 〈3,−,−〉
to AFFECT for the left subtree of root in G.

Line 12 of SelectTests inspects a set of outgoing prop-
erty edges from n and n′, PropOut(n) and PropOut(n′), re-
spectively, and compares them. If they differ, the algorithm
adds the deleted property edges to DELETE and AFFECT
(lines 13-14) and the added property edges to ADD (line
15). For the deleted property edges, the algorithm com-
putes the difference in the outgoing property edges of n and
n′ (PropOut(n)−PropOut(n′)), whose triples refer to the
deleted property edges in G—the edges exist in G, but not in
G′. Thus, the algorithm adds these triples to DELETE (line
13). In addition, because the algorithm builds AFFECT
in terms of entities in G and the deleted property edges
are changed entities in G, the algorithm adds the triples to
AFFECT as well (line 14). For the added property edges,
the algorithm computes the difference in the outgoing prop-
erty edges of n′ and n (PropOut(n′)− PropOut(n)), whose
triples refer to the added property edges in G′—the edges
exist in G′, but not in G. Thus, the algorithm adds these
triples to ADD (line 15). In this case, however, because the
algorithm builds ADD in terms of G′, not G, it does not add
these triples to AFFECT.

To illustrate, consider node 8 in Figure 2. Because nodes
labeled “8” exist in both G and G′, they are matched nodes.
However, PropOut(8) 6= PropOut(8′) (line 12): PropOut(8)
in G is {〈8, 10, p2〉} whereas PropOut(8′) in G′ is {〈8, 9, p2〉}.
Thus, lines 13-15 are invoked. In lines 13-14, the algorithm
adds PropOut(8)−PropOut(8′) ({〈8, 10, p2〉}) to both AF-
FECT and DELETE. Likewise, in line 15, the algorithm
adds PropOut(8′)− PropOut(8) ({〈8, 9, p2〉}) to ADD.

Next SelectTests handles the case in which a match
for n (i.e., n′) is not found (line 16). When the match is

324

not found, n exists in G but not in G′ because n has been
deleted from G. For deleted nodes, the algorithm not only
adds 〈n,−,−〉 to DELETE and AFFECT, but also inspects
the set of outgoing property edges from n, PropOut(n), and
adds this set to DELETE and AFFECT (lines 17-18). For
the example in Figure 2, because node 7 exists in G but not
in G′, when lines 17-18 of the algorithm are invoked, the al-
gorithm adds 〈7,−,−〉 to DELETE and AFFECT. However,
because PropOut(7) is empty, nothing is added in terms of
the outgoing property edges from 7.

After the algorithm removes all triples for n′ ∈ G′ that
have a match n ∈ G (line 9), ADD contains only triples for
new nodes added to G′. To determine whether these nodes
include any outgoing property edges (which are necessarily
also newly added), the algorithm visits each added node n in
ADD (line 19) and adds PropOut(n) to ADD (line 20). For
example, when the algorithm reaches line 19, ADD contains
one node, node 11 in Figure 2(b), which also includes a new
outgoing property edge p4. Line 20 of the algorithm inspects
PropOut(11), ({〈11, 6, p4〉}) and adds it to ADD (line 20).

After the algorithm completes the computation, the final
states for the example in Figure 2 are

ADD={〈11,−,−〉, 〈8, 9, p2〉, 〈11, 6, p4〉},
DELETE={〈7,−,−〉, 〈3, 9, p1〉, 〈8, 10, p2〉}, and
AFFECT={〈root,−,−〉, 〈2,−,−〉, 〈3,−,−〉, 〈7,−,−〉,

〈8,−,−〉, 〈10,−,−〉, 〈3, 9, p1〉, 〈8, 10, p2〉}.

3.2.3 Phase 3: Select Tests
SelectTests selects all tests associated with entities in

AFFECT (lines 21-23) to include in T ′. Figure 2(c) shows
the test matrix that associates entities in G with tests in T
for the example ontology O. For the example, using the AF-
FECT set shown above, the algorithm adds {t1, t2, t3, t8, t9,
t10, t12, t13} to T ′. The remaining tests in T that do not
need to be run are {t4, t5, t6, t7, t11}.

Finally, SelectTests returns ADD, DELETE, and T ′

(line 24). The runtime of SelectTests is linear in the size
of G and G′; see [14] for the full complexity analysis.

3.2.4 Safety of SelectTests

An important aspect of an RTS technique is its safety.
A safe RTS technique guarantees that the set of tests it
selects to be rerun contains all tests in T that may behave
differently when run on the changed system [28].

An ontology-driven system includes a database that lo-
cates a set of data instances associated with entities of an
ontology. If a test (test query) references one or more classes,
it will query against the set of data instances associated with
each of those classes and their subclasses. Thus, tests will
behave differently when they reference classes whose set of
subclasses differ because of changes in the ontology. For ex-
ample, when the subclasses of a class in the ontology change,
the database will change to include instances of any new
subclasses and exclude instances of any removed subclasses.
SelectTests computes the transitive set of subclasses for
each class in the original and modified ontologies, and clas-
sifies those classes that have a different set of subclasses as
affected entities. Thus, it selects all tests associated with
classes in which the set of data instances associated with
those classes and their subclasses may have changed.

Additionally, if a test references a property or a restric-
tion, it will query against the set of data instances associ-
ated with that property or restriction only. Tests will thus

Figure 3: Three components of OntoReTest.

behave differently when they reference deleted properties.
For example, if the constraint type of the restriction on a
property edge changes, the interpretation of that edge is
potentially different. Because our graph representation in-
cludes restrictions in the property edge label, SelectTests
detects changed restrictions as deletions of the original edges
and additions of the new ones, and classifies the deleted orig-
inal edges as affected entities. Thus, it will select all tests
associated with the deleted restriction edge. Selection with
respect to property changes will be performed in a similar
manner because properties and restrictions are represented
by the same type of edges.

3.2.5 Limitation of SelectTests

The main limitation of our algorithm is that knowledge
not explicitly defined in an ontology (i.e., implicit concepts)
will not be represented in our graph. To address this limita-
tion, we run a reasoner engine on the ontology being modeled
before constructing its graph model. This is a commonly-
used approach in ontology languages because reasoner en-
gines can deduce implicit knowledge. Such engines can,
for instance, infer class-subclass relationships and determine
whether a class is consistent (i.e., it can have instances).

4. EMPIRICAL EVALUATION
To evaluate the effectiveness and efficiency of algorithm

SelectTests, we implemented it in a tool, OntoReTest,
and used the tool to conduct studies on two large real-world
ontologies. In this section, we describe the experimental
setup, discuss the studies, and present the results.

4.1 Experimental Setup

4.1.1 Implementation
As Figure 3 shows, OntoReTest consists of compo-

nents for (1) parsing the old and new ontologies and creating
graphs, (2) computing changes and effects of the changes
(Phases 1 and 2 of SelectTests), and (3) selecting tests
associated with the effects of the changes (Phase 3 of Se-
lectTests).

The first component inputs the old and new versions of
ontology files, O and O′, respectively, parses them, and cre-
ates graphs. The component uses several libraries to assist
with parsing and reasoning about ontologies and to repre-
sent and traverse the graphs. First, the component parses
O and O′ using the OWL API,5 and translates them into
OWL (the Web Ontology Language) ontologies [2]. OWL is

5
http://owlapi.sourceforge.net/

325

Table 3: Subjects used in the empirical studies
Properties & # Test

Subject Classes Restrictions Vers. Cases Coverage

i2b2 104967 0 7 1331 99.99%
GO 34636 11101 7 3499 52.75%

a W3C (World Wide Web Consortium) standard. The OWL
API supports various input formats, such as RDF/XML [4],
OWL/XML [12], and OBO [29], parses these formats, and
translates them into OWL ontologies. Supporting multiple
input formats lets OntoReTest be applicable to a vari-
ety of ontologies. Second, after parsing the ontologies, the
component invokes the HermitT6 OWL reasoner to compute
inferable subclass relationships in each ontology. Third, the
component constructs and outputs graphs G and G′. The
component uses the JGraphT library7 to represent G and
G′, with custom extensions for handling specific edge types.

Using G and G′, the second component computes ADD,
DELETE, and AFFECT. This component outputs ADD
and DELETE, which will be reported to the user, and AF-
FECT, which will be used by the third component.

Finally, the third component inputs AFFECT along with
M , which associates tests in the original test suite T with
entities in G. This component outputs T ′, which are those
tests in T associated with elements in AFFECT, as indicated
by M . For our studies, we obtained M automatically for
each subject by parsing the test queries and extracting the
ontology terms contained in each test query.

4.1.2 Subjects
Our first subject is i2b2 (Informatics for Integrating Biol-

ogy and the Bedside) [20], which is a large informatics frame-
work and system that targets data warehouses for clinical
data in the biomedical domain. i2b2 organizes data around
terms (i.e., classes) from an ontology; all user queries in i2b2

use terms from the ontology and do not query the backend
database directly. i2b2 clients interact with the i2b2 server
by exchanging XML-based messages over a REST (REpre-
sentational State Transfer) interface [23], which is an archi-
tectural style of creating client-server web services. Table 3
provides information about the i2b2 ontology.

To evaluate our approach against i2b2, we used real on-
tology changes from the Analytic Information Warehouse
(AIW) project [1] of the Center for Comprehensive Infor-
matics (CCI) at Emory University. Researchers in the AIW
project—several of whom are collaborators on this work—
used the standard i2b2 ontology and customized it for the
architecture of their system by adding, removing, and chang-
ing ontology classes. Although the intermediate versions
used in the AIW project were not preserved, we had ac-
cess to the original and current versions of the ontology, v0
and v1. This allowed us to simulate the incremental evolu-
tion of the ontology by creating five intermediate versions,
va, ..., ve, each of which contained a subset of the changes
between v0 and v1. We were therefore able to use seven ver-
sions of the i2b2 ontology in our experiments: v0, va,..., ve,
and v1. (Note that, because i2b2 uses its own representa-
tion for ontologies, we converted each ontology into an OWL
representation for use by SelectTests.)

6
http://hermit-reasoner.com/

7
http://http://www.jgrapht.org/

We could not run the test queries from the AIW project
because they involve sensitive health information that is pro-
tected by law and institutional policy. However, we were
able to acquire test queries by using the actual user queries
run against the public i2b2 instance hosted at i2b2.org. These
queries use classes from the standard i2b2 ontology, which
is the base ontology we used for evaluating the effects of
changes. We initially gathered 3162 test queries this way.
We eliminated redundant queries that used the same on-
tology terms and logical operators, which resulted in 1331
unique test queries that we used as our test suite for the
studies. We also measured the coverage achieved by this test
suite in terms of the ontology classes that it exercises, di-
rectly and indirectly,8 and found that it covers 99.99% of the
i2b2 ontology entities, as reported in Table 3. Our collabo-
rators within the AIW project confirmed that these public
test queries are structurally similar to those used during the
development of the AIW project.

Our second subject is the Gene Ontology (GO), which is an
ontology for genomic information provided by The Gene On-
tology Consortium [3]. GO is available in OBO format, which
is compatible with OWL. Furthermore, GO is available as a
relational database (e.g., MySQL) consisting of two parts:
the term database, which contains the ontology terms and
relationships, and the annotated data set, which contains in-
stance data that is annotated with the GO terms. Table 3
provides information about GO. Although GO is smaller than
the i2b2 ontology, it includes properties and restrictions that
the i2b2 ontology lacks. (Note that all properties and restric-
tions in GO can be represented in our current representation.)

To evaluate our approach against GO, we used seven ver-
sions of GO, available publicly at the NCBO (National Center
for Biomedical Ontology) BioPortal website.9 GO is updated
daily in the BioPortal. We used version 1.1.2132 as our base
ontology, v0, and selected five versions that were updated
at various intervals after v0 (from 1 day to 1.5 months): va
to ve. Finally, we chose a version with a large number of
changes by selecting a version that was one-year old with
respect to v0. We labeled that version v−1.

We used the relational database (MySQL) form of GO,
which includes an annotated data set, as the target system
for our tests. We gathered test queries for GO using example
queries from the Gene Ontology Consortium’s public wiki
page.10 More precisely, we selected seven queries and used
them as query templates: two templates query the term
database only, whereas the remaining templates query both
the term database and the annotated data set. For each
template, we generated 500 queries by selecting distinct GO

terms at random from the term database, and substituting
each selected term for the original term in the query tem-
plate. One of the 3,500 queries we generated repeatedly
failed to execute because of an out-of-memory error, so we
used 3,499 unique queries as our tests. Also in this case,
we measured the coverage achieved by the test suite on the
ontology under test, and found that it covers 52.75% of the
GO ontology entities.

8An entity is directly covered when the entity is exercised
because it is referenced in a test query and indirectly covered
when the entity is exercised because it is a subclass of a
directly-covered entity.
9
http://bioportal.bioontology.org/ontologies/1070

10
http://wiki.geneontology.org/index.php/Example_Queries

326

Table 4: Results of Study 1 for i2b2

Our % of
Version DEL- AFF- approach / tests

Pair ADD ETE ECT Retest all selected

(v0,va) 17982 15943 15945 626 / 1331 47.03
(v0,vb) 15887 1551 1553 150 / 1331 11.27
(v0,vc) 35347 9613 9615 136 / 1331 10.22
(v0,vd) 4584 4410 4412 78 / 1331 5.86
(v0,ve) 880 61 64 43 / 1331 3.23
(v0,v1) 74681 31578 31581 906 / 1331 68.07

Table 5: Results of Study 1 for GO

Our % of
Version DEL- AFF- approach / tests

Pair ADD ETE ECT Retest all selected

(v0,va) 26 0 57 5 / 3499 0.14
(v0,vb) 213 0 259 27 / 3499 0.77
(v0,vc) 350 16 523 56 / 3499 1.60
(v0,vd) 388 17 587 59 / 3499 1.69
(v0,ve) 534 25 835 74 / 3499 2.11

(v0,v−1) 265 4181 7214 624 / 3499 17.83

4.2 Study 1: Effectiveness of Test Selection
The goal of this study is to evaluate the effectiveness of

our approach in selecting tests for changes in ontologies. To
do this, we

1. Ran OntoReTest on each pair of versions for each subject.

• Recorded the sizes of ADD, DELETE, and AFFECT.

• Recorded the number of tests selected from the origi-
nal test suite.

2. Computed the percentage of tests selected from the original
test suite.

Tables 4 and 5 present the results of the study for i2b2

and GO, respectively. The first column of each table shows
the version pair for the old and new versions of the ontol-
ogy. The next three columns give the number of entities
included in the result sets (i.e., ADD, DELETE, and AF-
FECT) produced by our algorithm. The next column shows
the ratio of the number of tests selected by our approach to
the number of tests in the test suite, and the last column
shows the percentage of tests selected. For example, in Ta-
ble 4, for (v0,ve), there are 880 added entities (ADD), 61
deleted entities (DELETE), 64 affected entities (AFFECT),
and 43 tests selected out of 1331 in the test suite or 3.23%
of the tests.

The data in Table 4 indicate that the percentage of tests
selected for i2b2 ranges from 3.23% to 68.07%. For (v0,va),
which includes the greatest number of changes among the
intermediate versions, the percentage of selected tests is
47.03%, which reduces by more than half the number of
tests to rerun on va. For (v0,vb) to (v0,ve), the percentage
of selected tests is less than 12%, which illustrates the signif-
icant reduction in the number of tests to rerun that can be
achieved by our algorithm. Furthermore, for (v0,v1), where
a large number of changes are made (approximately 30,000
out of the 100,000 classes are changed), our approach selects
less than 70% of the tests. Thus, even in the worst case for
i2b2, our approach is effective in reducing by over 30% the
number of tests that need to be rerun.

The data in Table 5 show that even better results are
achieved for GO than for i2b2: the percentage of tests se-
lected ranges from 0.14% to 17.83%. Because (v0,va) and

(v0,vb) include no entities in DELETE and the size of AF-
FECT is small, OntoReTest selects less than 1% of the
tests. Because there are more changes in (v0,vc), (v0,vd),
and (v0,ve), the tool selects more tests than it did for the
first two version pairs, but the percentage is still only ap-
proximately 2%. For (v0,v−1), which is the comparison of
the base and the year-old ontologies, the tool selects 17.83%
of the tests. Thus, even in the worst case for GO, our ap-
proach reduces the number of tests that need to be rerun by
over 80%.

Overall, the data in Tables 4 and 5 show that our ap-
proach is effective in selecting tests for two real-world on-
tologies. The results illustrate that our approach can achieve
significant reduction in the number of tests that need to be
rerun based on a changed ontology.

4.3 Study 2: Efficiency of Test Selection
The goal of this study is to evaluate the efficiency of our

approach in selecting tests. To be efficient, the time required
to select the tests plus the time required to rerun the selected
tests must be less than the time required to rerun all the
tests. To do this, we

1. Collected the running time of each test and calculated the
sum of these running times, which gave the time required
to rerun all tests (the Retest-all approach).

2. Ran each test five times and collected the minimum and
maximum from the five runs.

3. Computed the total time for regression testing, which is the
sum of the time that OntoReTest requires to select tests
and time that it takes to run the tests that the tool selected
(Section 4.2).

4. Compared the total time for regression testing with the
Retest-all approach.

So that we could observe possible differences in running time
due to network congestion, server load, etc. for i2b2, we per-
formed this study not only on a public i2b2 instance hosted
by i2b2.org but also on a local instance in our local network.
We performed the study for the GO database on an instance
located in our local network.

Table 6 presents the results of the study. The first column
shows the subjects. The second column shows Retest all and
the version pairs, which are the same as those we used in
Study 1. The next two columns list the minimum (MIN)
and the maximum (MAX) running times (in seconds)11 of
tests for Retest all and for the tests selected for each ver-
sion pair. Finally, the last column lists the running time
of OntoReTest in seconds. For example, for Retest all for
public i2b2, the MIN and MAX values of running time for all
tests are 7528 seconds and 12104 seconds, respectively. The
running time of OntoReTest is not applicable for Retest
all because our analysis is not performed when all tests are
rerun. For another example, for version pair (v0,vb) for lo-
cal i2b2, the MIN and MAX running times for the selected
tests are 782 seconds and 1034 seconds, respectively, and the
running time for OntoReTest on (v0,vb) is 41 seconds.

Figure 4 presents the data from Table 6 as two graphs
that show the MIN (in the upper graph) and MAX (in
the lower graph) running time for our regression-testing ap-
proach as a percentage of the Retest-all approach. In each
graph, the horizontal axis represents Retest all and the ver-
sion pairs for three subjects: public i2b2, local i2b2, and
GO. The vertical axes represent the total time for regression

11Rounded to seconds for all but (v0,va) of GO.

327

Table 6: Results for Study 2
Onto-

Version MIN MAX ReTest
Subject Pair (Seconds) (Seconds) (Seconds)

public Retest all 7528 12104 n/a
i2b2 (v0,va) 3803 6018 43

(v0,vb) 834 1355 41
(v0,vc) 822 1311 45
(v0,vd) 441 716 40
(v0,ve) 255 396 42
(v0,v1) 5231 8386 40

local Retest all 7107 9810 n/a
i2b2 (v0,va) 3588 4859 43

(v0,vb) 782 1034 41
(v0,vc) 781 1139 45
(v0,vd) 407 540 40
(v0,ve) 234 314 42
(v0,v1) 4924 6754 40

GO Retest all 14220 20711 n/a
(v0,va) 0.012 0.284 96
(v0,vb) 948 1617 89
(v0,vc) 1014 2626 101
(v0,vd) 1015 2629 91
(v0,ve) 1385 3942 87

(v0,v−1) 9451 13280 95

testing (i.e., the time required to select tests plus the time to
run the selected tests) as a percentage of the time required
for the Retest-all approach. Because the total time for re-
gression testing is calculated as a percentage of Retest all,
in each graph, the height of the bars for Retest all is 100%.

Although running times for individual tests are not shown
in Table 6, our results show that there was a high variance in
the running times of individual tests in both subjects. For
public i2b2, the running time of the tests varies from 2.6
seconds to 30.5 seconds, and the average running time of a
test is 7.2 seconds. For local i2b2, the running time of each
test ranges from 2.5 seconds to 52.3 seconds and the average
running time of a test is 6.3 seconds. Table 6 shows that
the running time of OntoReTest on i2b2 varies from 40
seconds to 45 seconds, which is a small portion of the entire
running time of the selected tests. For all version pairs in
the table, both MIN and MAX of the running times taken
for public i2b2 are greater than those for local i2b2. In par-
ticular, the MAX value of running all tests for public i2b2

is 12104 seconds (' 3.4 hours) whereas the MAX value for
local i2b2 is 9810 seconds (' 2.7 hours). Thus, the data
indicate the slowdown that may occur when regression test-
ing is performed on a public server instance. However, as
shown in Figure 4, the overall percentage of running time is
similar for public i2b2 and local i2b2. Moreover, the heights
of the MIN and MAX bars for every version pair in public
i2b2 and local i2b2 are also similar. For every version pair in
the figure, the data illustrate the significant reduction in the
time required to perform the regression testing: for (v0,va)
and (v0,v1), approximately 50% and 70%, respectively; for
(v0,vb) and (v0,vc), approximately 11%; and for (v0,vd) and
(v0,ve), approximately 5%.

For GO, the running time of each test ranges from 0.0006
to 5942.2 seconds and is 4.5 seconds on average. Addition-
ally, as shown by the MIN and MAX values in Table 6, GO
exhibits a significant variation between the MIN and MAX
running times: tests that contain a number of JOIN clauses
execute much longer than those without JOINs. Also, be-
cause we ran each test five times consecutively, the running

Figure 4: Graphical view of the results for Study 2.

times of the last four subsequent runs take relatively less
time than that of the first run due to a caching effect; this
leads to high variance between the MIN and MAX values
for GO tests. This variation can be observed in Figure 4 as
well. The figure shows that for (v0,vc), (v0,vd), and (v0,ve),
the difference between the MIN and MAX values of the per-
centage is greater than that of other version pairs. However,
despite the large variance, the percentage of running time
required for regression testing is less than 20% for every ver-
sion pair in GO except (v0,v−1), which contains the greatest
number of affected entities (AFFECT).

Table 6 and Figure 4 illustrate the efficiency of our ap-
proach in selecting tests: they show a remarkable reduction
in the running time for regression testing for every version
pair compared to the Retest-all approach for all subjects.
Moreover, for local i2b2 and GO in Table 6, even if we com-
pare the MIN running time of Retest all (i.e., 7107 seconds
for local i2b2 and 14220 seconds for GO, respectively) with
the MAX running time of every other version pair in these
two subjects, the MAX running time of regression testing
by OntoReTest is significantly less than the MIN running
time of Retest all. We see this result in every version pair
in public i2b2 except (v0,v1). Therefore, our approach is
efficient in test selection, and reduces the running time of
regression testing significantly.

4.4 Threats to Validity
We consider several possible threats to the validity of our

studies. Threats to internal validity concern possible er-
rors in our implementation. To mitigate these threats, we
performed unit tests when developing OntoReTest using
JUnit with different sizes of examples. For large ontology
examples, we spot checked changes and verified that the
results are correct. We also validated the scripts that we
developed for selecting tests by comparing the results in the
AFFECT set with the entities used in the test suites.

Threats to external validity arise when the results of the
experiment cannot be generalized. We evaluated our tech-
nique with only two subject ontologies that are used in the
bioinformatics domain. Thus, the performance of our tool

328

may vary for other subjects in the bioinformatics domain or
subjects in other domains. However, both of the systems
and the versions we used are real, large systems and ontolo-
gies in common use. The test queries used as our tests in the
i2b2 study are those actually used in the public web client,
as we discuss in Section 4.1.2. Furthermore, the developers
of the AIW project [1] that are collaborating with us on this
work confirmed that our tests are similar in terms of struc-
ture and coverage to the test queries they actually use for
development within the project. The ones used for subject
GO are derived from templates that correspond to real test
queries available in the public domain.

Therefore, although more experimentation will help fur-
ther validate our results, we believe that our results are likely
to generalize to other systems and tests.

5. RELATED WORK
Little research has been performed on testing (and regres-

sion testing) of ontology-driven systems. However, some of
the research on detecting changes in ontologies and on re-
gression testing of databases is related to our work.

There have been several ontology-comparison techniques
developed in the web services, artificial intelligence, and
knowledge engineering domains. Noy and colleagues [24,25]
created the PromptDiff algorithm that finds various types
of changes (e.g., add, delete, move, and rename) using a
number of heuristic matchers they developed. Tury and
Bieliková [30] also used heuristics in their tool OntoDiff for
searching for equivalent (identical or similar) elements in on-
tology versions. However, because these techniques depend
on heuristics, they cannot guarantee that they will detect
all changes between two ontologies (i.e., they are not safe).
In contrast, our algorithm, SelectTests, does not depend
on heuristics and is safe in selecting tests. Furthermore, our
algorithm computes the effects of changes, in addition to
detecting additions and deletions.

Klein and colleagues [15, 16] presented OntoView for on-
tology versioning and change detection. OntoView compares
versions of RDF-based ontologies and computes the differ-
ences between classes and properties. However, OntoView
supports only the RDF format, whereas OntoReTest is
compatible with various formats. In addition, because On-
toView also partially depends on heuristics, it is not safe.

We tried to use these existing approaches to compute on-
tology differences. Unfortunately, the way they compare on-
tologies is more expensive, despite their use of heuristics, be-
cause they compute extra detailed information—information
that is useless for our technique. In fact, these techniques
do not scale and could not run on either of the ontologies
we considered because of the size of the ontologies. Finally,
we also found that these techniques may miss some changes,
which would cause our technique not to select some poten-
tially affected tests.

There are several existing techniques that perform regres-
sion test selection for databases. Willmor and Embury [33]
presented a regression-testing technique for database-driven
applications that safely performs test selection. Their tech-
nique determines whether changes to a program affect da-
tabase states to select those tests that are associated not
only with the program changes but also with the database
states affected by the changes. There has also been re-
search that addresses changes to database entities for se-
lecting tests [10, 21]. The techniques select those tests that

cover the database commands that associate with changed
database entities. However, unlike these techniques, our
technique addresses changes to ontologies and not database
states. Moreover, our empirical studies demonstrate both
the effectiveness and the efficiency of selecting tests for data-
base systems based on changed ontologies.

Haftmann and colleagues [9] introduced an efficient re-
gression-test-selection technique for database applications.
They investigated executing tests in parallel and reducing
database resets for database applications with improved run-
ning time of tests and reduced resources. Another technique
of Haftmann and colleagues [8] is an efficient regression-
testing technique that controls the order of test execution to
address the limitation of the existing test tools not designed
for database applications. Our work is related to theirs in
that the goal of the research is to reduce the time required
for regression testing. However, the techniques are com-
plementary: our technique assists with efficient regression
testing through effective test selection without controlling
test executions (i.e., parallelized and ordered execution of
tests), but the efficiency of our technique could be improved
by integrating it with theirs.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a new technique for selecting

tests based on changes in an ontology. Our technique uses
a novel algorithm that compares graph representations of
an ontology O and a changed version of that ontology O′

to identify changes and effects of those changes. Using the
effects of the changes, our technique selects tests to rerun
that are associated with the affected entities in O.

In the paper, we also described an implementation of our
technique, OntoReTest, and studies on two real subjects
to evaluate the efficiency and effectiveness of the technique.
Our studies show that, for our subjects, OntoReTest is
effective in reducing the number of tests that need to be
rerun based on changes to an ontology. The studies also
show that, for our subjects, the technique is efficient and
can provide significant reduction in regression-testing time.

There are several possible directions for future work. Our
experiments show the reduction in regression testing that
can be achieved by our technique. However, we performed
our experiments on only two subjects, and in one particular
domain—bioinformatics. In the future, we plan to evalu-
ate our technique on other bioinformatics subjects and on
subjects in other domains.

The technique we presented addresses regression test se-
lection, which is an important regression-testing activity.
There are other activities, such as test prioritization, test-
suite augmentation, obsolete-test identification, and test re-
pair that can be addressed. We believe that we can use the
ADD, DELETE, and AFFECT sets computed by our algo-
rithm to address some of these tasks. Our future work will
include investigation of these additional regression-testing
activities.

7. ACKNOWLEDGMENTS
This research was supported in part by grants NSF CCF-

0541048, NSF CCF-0725202, NSF CCF-0964647, NSF CCF-
1116210, NHLBI R24HL085343, NIH RC4MD005964, NCI
HHSN261200800001E, NLM R01LM009239, NIH/CTSA PHS
UL1RR025008, and NLM R01LM011119, and by an IBM

329

Faculty Award, an IBM Software Quality Innovation Award,
and a Microsoft Research Software Engineering Innovation
Foundation Award.

8. REFERENCES
[1] Analytic Information Warehouse.

http://cci.emory.edu/cms/projects/aiw.html,
2012. [Online; accessed Feb-2012].

[2] G. Antoniou and F. V. Harmelen. Web Ontology
Language: OWL. In Handbook on Ontologies in
Information Systems, pages 67–92. Springer, 2003.

[3] M. Ashburner. Gene ontology: Tool for the unification
of biology. Nature Genetics, 25:25–29, 2000.

[4] D. Beckett and B. McBride. RDF/XML Syntax
Specification. Technical report, W3C, 2004.

[5] B. Beizer. Software Testing Techniques. International
Thomson Computer Press, 1990.

[6] Y. F. Chen, D. S. Rosenblum, and K. P. Vo.
TestTube: A system for selective regression testing. In
Proc. of ICSE ’94, pages 211–222, May 1994.

[7] T. R. Gruber. A translation approach to portable
ontology specifications. Knowl. Acquis., 5:199–220,
June 1993.

[8] F. Haftmann, D. Kossmann, and A. Kreutz. Efficient
regression tests for database applications. In Proc. of
CIDR ’05, pages 95–106, 2005.

[9] F. Haftmann, D. Kossmann, and E. Lo. A framework
for efficient regression tests on database applications.
The VLDB Journal, 16:145–164, January 2007.

[10] R. A. Haraty, N. Mansour, and B. Daou. Regression
testing of database applications. In Proc. of SAC ’01,
pages 285–289, New York, NY, USA, 2001. ACM.

[11] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gujarathi.
Regression test selection for Java software. In Proc. of
OOPSLA ’01, pages 312–326, Oct. 2001.

[12] M. Hori, J. Euzenat, and P. F. Patel-Schneider. OWL
Web Ontology Language XML Presentation Syntax.
http://www.w3.org/TR/owl-xmlsyntax/, 2012.
[Online; accessed Feb-2012].

[13] C. Kaner. Improving the maintainability of automated
test suites. In Proc. of Quality Week 1997, May 1997.

[14] M. Kim, J. Cobb, M. J. Harrold, T. Kurc, A. Orso,
J. Saltz, K. Malhotra, and S. Navathe. Efficient
regression testing of ontology-driven systems.
http://pleuma.cc.gatech.edu/aristotle/

pdffiles/kim_techrep11.pdf/, September 2011.
[15] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov.

Ontology versioning and change detection on the web.
In Proc. of EKAW ’02, pages 197–212, 2002.

[16] M. Klein, A. Kiryakov, D. Ognyanov, D. Fensel, and
O. L. Sofia. Finding and characterizing changes in
ontologies. In Proc. of ICCM ’02, pages 79–89, 2002.

[17] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, and
C. Chen. Firewall regression testing and software
maintenance of object-oriented systems. Journal of
Object-Oriented Programming, 1994.

[18] H. K. N. Leung and L. J. White. Insights into
regression testing. In Proc. of ICSM ’89, pages 60–69,
Oct. 1989.

[19] C. McCarty, R. Chisholm, C. Chute, I. Kullo,
G. Jarvik, E. Larson, R. Li, D. Masys, M. Ritchie,
D. Roden, J. Struewing, W. Wolf, and the eMERGE

Team. The emerge network: A consortium of
biorepositories linked to electronic medical records
data for conducting genomic studies. BMC Medical
Genomics, 4(1):13, 2011.

[20] S. N. Murphy, M. Mendis, K. Hackett, R. Kuttan,
W. Pan, L. C. Phillips, V. Gainer, D. Berkowicz, J. P.
Glaser, I. Kohane, and et al. Architecture of the
open-source clinical research chart from Informatics
for Integrating Biology and the Bedside. AMIA
Symposium, 2007:548–552, 2007.

[21] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and
A. Orso. Regression testing in the presence of
non-code changes. In Proc. of ICST ’11, pages 21–30,
Washington, DC, USA, 2011. IEEE Computer Society.

[22] D. L. M. Natalya Fridman Noy. Ontology development
101: A guide to creating your first ontology. Technical
Report KSL-01-05, Knowledge Systems, AI
Laboratory, Stanford University, 2001.

[23] S. T. S. D. Network. RESTful Web Services.
http://java.sun.com/developer/

technicalArticles/WebServices/restful/, August
2006.

[24] N. F. Noy, H. Kunnatur, M. Klein, and M. A. Musen.
Tracking Changes During Ontology Evolution. In In
Proceeding of the 3rd International Semantic Web
Conference, pages 259–273, 2004.

[25] N. F. Noy and M. A. Musen. Promptdiff: a fixed-point
algorithm for comparing ontology versions. In
Eighteenth national conference on Artificial
intelligence, pages 744–750, 2002.

[26] A. Orso, N. Shi, and M. J. Harrold. Scaling regression
testing to large software systems. In Proc. of FSE ’04,
pages 241–252, Nov. 2004.

[27] J. Pathak, J. Wang, S. Kashyap, M. A. Basford, R. Li,
D. R. Masys, and C. G. Chute. Mapping clinical
phenotype data elements to standardized metadata
repositories and controlled terminologies: the emerge
network experience. JAMIA, 18(4):376–386, 2011.

[28] G. Rothermel and M. J. Harrold. A safe, efficient
regression test selection technique. ACM Transactions
on Software Engineering and Methodology,
6(2):173–210, Apr. 1997.

[29] B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug,
W. Ceusters, L. J. Goldberg, K. Eilbeck, A. Ireland,
C. J. Mungall, N. Leontis, P. Rocca-Serra,
A. Ruttenberg, S.-A. Sansone, R. H. Scheuermann,
N. Shah, P. L. Whetzel, and S. Lewis. The OBO
Foundry: coordinated evolution of ontologies to
support biomedical data integration. Nat Biotech,
25(11):1251–1255, 2007.

[30] M. Tury and M. Bieliková. An approach to detection
ontology changes. In Proc. of ICWE ’06, 2006.

[31] F. Vokolos and P. Frankl. Pythia: A regression test
selection tool based on text differencing. In Proc. of
ENCRESS ’97, pages 3–21, May 1997.

[32] L. J. White and H. K. N. Leung. A firewall concept
for both control-flow and data-flow in regression
integration testing. In Proc. of ICSM ’92, pages
262–270, Nov. 1992.

[33] D. Willmor and S. M. Embury. A safe regression test
selection technique for database-driven applications.
In Proc. of ICSM ’05, pages 421–430, 2005.

330

