
AUTOMATED BUG NEIGHBORHOOD
ANALYSIS FOR IDENTIFYING
INCOMPLETE BUG FIXES

Mijung Kim,* Saurabh Sinha,† Carsten Gorg,*
Hina Shah,* Mary Jean Harrold,* and Mangala
Gowri Nanda†

* Georgia Institute of Technology
† IBM Research – India

Supported by NSF under CCF-0429117, CCF-0541049, and CCF-0725202,
and IBM by a Software Quality Innovation Faculty Award

£ Automated techniques to detect Java runtime
exceptions (e.g., null-pointer exceptions)
o ESC/Java [Flanagan et al. PLDI 2002]

o SALSA [Loginov et al. ISSTA 2008]

o XYLEM [Nanda and Sinha ICSE 2009]

o XYLEM w/ Stack trace [Sinha et al. ISSTA 2009]

2

Existing Techniques

£ Automated techniques to detect Java runtime
exceptions (e.g., null-pointer exceptions)
o ESC/Java [Flanagan et al. PLDI 2002]

o SALSA[Loginov et al. ISSTA 2008]
o XYLEM[Nanda and Sinha ICSE 2009]

o XYLEM w/ Stack trace[Sinha et al. ISSTA 2009]

3

Limitations
Techniques don’t identify whether and
how bugs are fixed

Existing Techniques

£ Automated techniques to detect Java runtime
exceptions (e.g., null-pointer exceptions)
o ESC/Java [Flanagan et al. PLDI 2002]

o SALSA[Loginov et al. ISSTA 2008]
o XYLEM[Nanda and Sinha ICSE 2009]

o XYLEM w/ Stack trace[Sinha et al. ISSTA 2009]

£ Research that has investigated bug fixes
o Evaluating static analysis defect warnings on production

software [Ayewah, et al. PASTE 2007]

o Tracking defect warnings across versions
[Spacco, Hovemeyer, and Pugh MSR 2006]

4

Limitations
Techniques don’t identify whether and
how bugs are fixed

Existing Techniques

£ Automated techniques to detect Java runtime
exceptions (e.g., null-pointer exceptions)
o ESC/Java [Flanagan et al. PLDI 2002]

o SALSA[Loginov et al. ISSTA 2008]
o XYLEM[Nanda and Sinha ICSE 2009]

o XYLEM w/ Stack trace[Sinha et al. ISSTA 2009]

£ Research that has investigated bug fixes

5

Limitations
Techniques don’t identify whether and
how bugs are fixed

Limitations
Techniques don’t identify whether
attempted bug fixes are complete

Existing Techniques

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference

6

Incomplete Bug Fixes

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference

7

foo(int i, j) {
[1] x = null;
[2] if (j > 10) {

[3] x.m1();
[4] x.m2();

} else {
[5] x.m3();
[6] x.m4();

}
}

NPA1

NPR1

Incomplete Bug Fixes

// NPA1

// NPR1

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference

8

foo’(int i, j) {
[1] x = null; // NPA1
[2] if (j > 10) {
[2a] if (x != null) // FIX
[3] x.m1(); // NPR1
[4] x.m2();

} else {
[5] x.m3();
[6] x.m4();

}
}

NPA1

NPR1

Incomplete Bug Fixes

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference

9

NPA1

NPR1X
X

Incomplete Bug Fixes

foo’(int i, j) {
[1] x = null; // NPA1
[2] if (j > 10) {
[2a] if (x != null) // FIX
[3] x.m1(); // NPR1
[4] x.m2();

} else {
[5] x.m3();
[6] x.m4();

}
}

X

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference

10

NPA1

NPR1X
X

Incomplete Bug Fixes

foo’(int i, j) {
[1] x = null; // NPA1
[2] if (j > 10) {
[2a] if (x != null) // FIX
[3] x.m1(); // NPR1
[4] x.m2();

} else {
[5] x.m3();
[6] x.m4();

}
}

// NPR2

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference

11

NPA1

NPR1X
X

NPR2

Incomplete Bug Fixes

foo’(int i, j) {
[1] x = null; // NPA1
[2] if (j > 10) {
[2a] if (x != null) // FIX
[3] x.m1(); // NPR1
[4] x.m2();

} else {
[5] x.m3();
[6] x.m4();

}
}

// NPR2

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference

12

NPR1X
X

NPR2

NPA1

Incomplete Bug Fixes

foo’(int i, j) {
[1] x = null; // NPA1
[2] if (j > 10) {
[2a] if (x != null) // FIX
[3] x.m1(); // NPR1
[4] x.m2(); // NPR2

} else {
[5] x.m3();
[6] x.m4();

}
}

// NPR3

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference

13

NPR1X
X

NPR2

NPR3

NPA1

Incomplete Bug Fixes

foo’(int i, j) {
[1] x = null; // NPA1
[2] if (j > 10) {
[2a] if (x != null) // FIX
[3] x.m1(); // NPR1
[4] x.m2(); // NPR2

} else {
[5] x.m3();
[6] x.m4();

}
}

// NPR3

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference

14

NPR1X
X

NPR2

NPR3

NPA1

Incomplete Bug Fixes

foo’(int i, j) {
[1] x = null; // NPA1
[2] if (j > 10) {
[2a] if (x != null) // FIX
[3] x.m1(); // NPR1
[4] x.m2(); // NPR2

} else {
[5] x.m3(); // NPR3
[6] x.m4();

}
}

Potential unfixed pairs
related to NPA1
à Incomplete fix

£ Bug neighborhood analysis
o Computes potential unfixed (NPA, NPR) pairs

£ Classification of attempted bug fixes as
complete or incomplete

£ Empirical studies using open-source and
commercial software
o Neighborhood can be large and complex
o Attempted bug fixes can be incomplete

15

Our Work

£ Bug Neighborhoods (BN)
£ Technique
£ Empirical Evaluation
£ Conclusion

16

Outline
BN Technique Evaluation Conclusion

Bug Neighborhood (BN)

£ Potential unfixed (NPA, NPR)
pairs related to NPA1 and
NPR1

£ BN is induced by 4 types of
NPAs and NPRs identified by
our approach
o Maybe NPR
o Forward NPR
o Maybe NPA
o Backward NPA

17

NPR2

NPR1

X
X NPR3

NPA1

BN Technique Evaluation Conclusion

Maybe NPRs

NPA1

NPR1

18

BN Technique Evaluation Conclusion

Maybe NPRs

£ NPRs that might be
reached by NPA1 in
other executions

NPA1

NPR1
Maybe
NPR2

Maybe
NPR3

19

X
X

BN Technique Evaluation Conclusion

Forward NPRs

£ NPRs that might be
reachable from
NPA1 after NPR1
and Maybe NPRs
are fixed

20

NPA1

NPR1
Maybe
NPR2

Maybe
NPR3

Forward
NPRs2

XXX

Forward
NPRs1

Forward
NPRs3

BN Technique Evaluation Conclusion

Maybe NPAs

£ NPAs that might
reach NPR1 in other
executions

NPA1

NPR1
Maybe
NPR2

Maybe
NPR3

Maybe
NPA2

Maybe
NPA3

21

Forward
NPRs2

Forward
NPRs1

Forward
NPRs3

X
X

BN Technique Evaluation Conclusion

Backward NPAs

£ NPAs that might
reach NPR1 after
NPA1 and Maybe
NPAs are fixed

22

NPA1

NPR1
Maybe
NPR2

Maybe
NPR3

Maybe
NPA2

Maybe
NPA3

Backward
NPAs2

Forward
NPRs2

Forward
NPRs1

Forward
NPRs3

Backward
NPAs1

Backward
NPAs3

XXX

BN Technique Evaluation Conclusion

Bug Neighborhood (BN)

BN for (NPA1, NPR1)

(NPA1, Maybe NPR2)

(NPA1, Maybe NPR3)

(Maybe NPA2, NPR1)

(Maybe NPA3, NPR1)

(NPA1, Forward NPR1)

…

(NPA1, Forward NPRn)

(Backward NPA1, NPR1)

…

(Backward NPAn, NPR1)

NPA1

NPR1
Maybe
NPR2

Maybe
NPR3

Maybe
NPA2

Maybe
NPA3

Backward
NPAs2

Forward
NPRs2

Forward
NPRs1

Forward
NPRs3

Backward
NPAs1

Backward
NPAs3

23

BN Technique Evaluation Conclusion

Bug Neighborhood (BN)

BN for (NPA1, NPR1)

(NPA1, Maybe NPR2)

(NPA1, Maybe NPR3)

(Maybe NPA2, NPR1)

(Maybe NPA3, NPR1)

(NPA1, Forward NPR1)

…

(NPA1, Forward NPRn)

(Backward NPA1, NPR1)

…

(Backward NPAn, NPR1)

NPA1

NPR1
Maybe
NPR2

Maybe
NPR3

Maybe
NPA2

Maybe
NPA3

Backward
NPAs2

Forward
NPRs2

Forward
NPRs1

Forward
NPRs3

Backward
NPAs1

Backward
NPAs3

24

BN Technique Evaluation Conclusion

£ BN for (NPA1, NPR1): set of potential unfixed
pairs related to (NPA1, NPR1)

£ Size of BN for (NPA1, NPR1): number of pairs
in BN

25

Definitions
BN Technique Evaluation Conclusion

£ BN for (NPA1, NPR1): set of potential unfixed
pairs related to (NPA1, NPR1)

£ Size of BN for (NPA1, NPR1): number of pairs
in BN

£ Complete fix: attempted fix (i.e. change from P
to P’) for (NPA1, NPR1) in which the BN for
associated pair in P’ is empty

26

Definitions
BN Technique Evaluation Conclusion

Algorithm

27

Bug
Neighborhood

Analysis

FixStatus
o unfixed
o fixed

• incomplete
• complete

Bug
Neighborhood

for (sa’, sr’) in P’

(sa, sr)
statements for
(NPA1, NPR1)

in P

Mapping
Component

(sa’, sr’)
mapped

statements in P’

BN Technique Evaluation Conclusion

Example

foo(int i, j) {

[1] x = null;

[2] if (j > 10) {

[3] x.m1();

[4] x.m2();

} else {

[5] x.m3();

[6] x.m4();

}

}

28

Input
(Sa, Sr): (1, 3)

BN Technique Evaluation Conclusion

// NPA1

// NPR1
// F-NPR

// M-NPR

// F-NPR

Example

foo(int i, j) {

[1] x = null;

[2] if (j > 10) {

[3] x.m1();

[4] x.m2();

} else {

[5] x.m3();

[6] x.m4();

}

}

foo’(int i, j) {

[1] x = null;

[2] if (j > 10) {

[2a] if (x != null) // FIX

[3] x.m1();

[4] x.m2();

} else {

[5] x.m3();

[6] x.m4();

}

}

29

X

Input
(Sa, Sr): (1, 3)

(Sa’, Sr’): (1, 3)

BN Technique Evaluation Conclusion

// F-NPR

// M-NPR

// F-NPR

// NPA1

// NPR1
// F-NPR

// M-NPR

// F-NPR

// NPA1

// NPR1

BugNeighborhoodAnalysis

foo’(int i, j) {

[1] x = null;

[2] if (j > 10) {

[2a] if (x != null) // FIX

[3] x.m1();

[4] x.m2();

} else {

[5] x.m3();

[6] x.m4();

}

}

30

X

(Sa’, Sr’): (1, 3)

£ Reaching NPAs for 3:
None

BN Technique Evaluation Conclusion

// F-NPR

// M-NPR

// F-NPR

// NPA1

// NPR1

BugNeighborhoodAnalysis

foo’(int i, j) {

[1] x = null;

[2] if (j > 10) {

[2a] if (x != null) // FIX

[3] x.m1();

[4] x.m2();

} else {

[5] x.m3();

[6] x.m4();

}

}

31

X

(Sa’, Sr’): (1, 3)

£ Reaching NPAs for 3:
None

£ Reachable NPRs for 1:
4, 5, 6

BugNeighborhood

(1, 4)

(1, 5) (1, 6)

BN Technique Evaluation Conclusion

// F-NPR

// M-NPR

// F-NPR

// NPA1

// NPR1

foo’(int i, j) {

[1] x = null;

[2] if (j > 10) {

[2a] if (x != null) // FIX

[3] x.m1();

[4] x.m2();

} else {

[5] x.m3();

[6] x.m4();

}

}

32

X

(Sa’, Sr’): (1, 3)

£ Reaching NPAs for 3:
None

£ Reachable NPRs for 1:
4, 5, 6

£ (1,3) Ï BugNeighborhood
\ FixStatus = fixed but,

incomplete

BugNeighborhood

(1, 4)

(1, 5) (1, 6)

BugNeighborhoodAnalysis
BN Technique Evaluation Conclusion

// F-NPR

// M-NPR

// F-NPR

// NPA1

// NPR1

foo’(int i, j) {

[1] x = null;

[2] if (j > 10) {

[2a] if (x != null) // FIX

[3] x.m1();

[4] x.m2();

} else {

[5] x.m3();

[6] x.m4();

}

}

33

X

(Sa’, Sr’): (1, 3)

£ Reaching NPAs for 3:
None

£ Reachable NPRs for 1:
4, 5, 6

£ (1,3) Ï BugNeighborhood
\ FixStatus = fixed but,

incomplete

BugNeighborhood

(1, 4)

(1, 5) (1, 6)

BugNeighborhoodAnalysis
BN Technique Evaluation Conclusion

// F-NPR

// M-NPR

// F-NPR

// NPA1

// NPR1

£ Finding (NPA, NPR) pairs: XYLEM
[Nanda and Sinha ICSE2009]

£ Integrated our analysis into XYLEM
£ Mapping pairs between P and P’
£ Identifying BN for a (Sa’, Sr’) pair in P’

(No Backward NPAs implementation)

34

Empirical Setup: Tools
BN Technique Evaluation Conclusion

Subject Classes Methods
Bytecode

Instructions
(NPA, NPR)

Pairs

Ant-1.6.0 1858 17204 443254 167

Lucene-2.2.0 381 2815 72691 86

Tomcat-4.1.27 260 4077 101075 97

App-A 278 3933 98225 63

App-B 169 1876 46286 119

App-C 2488 13746 340896 107

35

Empirical Setup: Subjects
BN Technique Evaluation Conclusion

Method
For each (NPA, NPR)
£ Compute BN and BN size
£ Classify

o BN in 1 of 8 categories
o BN size in 1 of 3 categories

Goal: To examine characteristics of BNs

36

Study 1: BN Categories and Sizes
BN Technique Evaluation Conclusion

BN Categories

Category
Maybe NPA

Present
Maybe NPR

Present
Forward NPR

Present

1 NO NO NO

2 NO NO YES

3 NO YES NO

4 NO YES YES

5 YES NO NO

6 YES NO YES

7 YES YES NO

8 YES YES YES
37

BN Technique Evaluation Conclusion

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

N
um

be
r

of
 (

N
PA

, N
PR

)
Pa

ir
s

Neighborhood Category

Ant Lucene Tomcat App-A App-B App-C

38

Occurrences of Each BN Category
BN Technique Evaluation Conclusion

£ Small: pairs £ 5
£ Medium: 5 < pairs £ 15
£ Large: pairs > 15

39

BN Size Categories
BN Technique Evaluation Conclusion

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Ant Lucene TomCat App-A App-B App-C

N
um

be
r

of
 (

N
PA

, N
PR

)
Pa

ir
s

Neighborhood Categories per Subjects

Small Neighborhood Medium Neighborhood Large Neighborhood

Occurrences of Each BN Category
by Sizes per Subject

40

BN Technique Evaluation Conclusion

Method
For each (NPA, NPR) in P’
£ Verified mapping from P (manually)
£ If mapping is accurate, compute BN for (NPA,

NPR) pair (manually verified)

Goal: To investigate existence and frequency
of incomplete fixes

41

Study 2: Completeness of Fixes
BN Technique Evaluation Conclusion

Subject

Incomplete Fixes /

Attempted Fixes

BN Categories of

Incomplete Fixes

BN Sizes of

Incomplete Fixes

Ant 4 / 26 C2, C4, C4, C5 1 x Small,
3 x Medium

Lucene 3 / 17 C4, C4, C4 1 x Small,
2 x Large

Tomcat 0 / 9 ¾ ¾

App-A 0 / 7 ¾ ¾

42

C M-NPA M-MPR F-NPR
2 N N Y
4 N Y Y
5 Y N N

Completeness of Attempted Bug Fixes
BN Technique Evaluation Conclusion

£ Implement Backward NPAs and precise
mapping component

£ Perform more experiments with more subjects
o Correlation between incomplete fixes and BN

category or size
o Comparison of results from open-source projects

and industrial projects
£ Guide developers in addressing an incomplete

fix and making it complete

43

Future Work
BN Technique Evaluation Conclusion

£ New bug neighborhood analysis
o Determines completeness of attempted bug fixes

£ Technique that helps developers prevent
incomplete fixes in new revisions

£ Empirical studies that show
o large and complex BNs do occur frequently
o Attempted bug fixes are incomplete in practice

44

Contributions
BN Technique Evaluation Conclusion

Q & A

