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£ Automated techniques to detect Java runtime 
exceptions (e.g., null-pointer exceptions)
o ESC/Java [Flanagan et al. PLDI 2002]

o SALSA [Loginov et al. ISSTA 2008]

o XYLEM [Nanda and Sinha ICSE 2009]

o XYLEM w/ Stack trace [Sinha et al. ISSTA 2009]
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exceptions (e.g., null-pointer exceptions)
o ESC/Java [Flanagan et al. PLDI 2002]

o SALSA[Loginov et al. ISSTA 2008]
o XYLEM[Nanda and Sinha ICSE 2009]

o XYLEM w/ Stack trace[Sinha et al. ISSTA 2009]

£ Research that has investigated bug fixes
o Evaluating static analysis defect warnings on production 

software [Ayewah, et al. PASTE 2007]

o Tracking defect warnings across versions 
[Spacco, Hovemeyer, and Pugh MSR 2006]
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Limitations
Techniques don’t identify whether and 
how bugs are fixed

Limitations
Techniques don’t identify whether 
attempted bug fixes are complete

Existing Techniques

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference
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£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference
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foo(int i, j) {
[1]  x = null;
[2]  if ( j > 10 ) { 

[3]      x.m1();
[4] x.m2(); 

} else { 
[5] x.m3(); 
[6] x.m4(); 

}
}

NPA1

NPR1

Incomplete Bug Fixes

// NPA1

// NPR1

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference
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foo’(int i, j) {
[1]  x = null; // NPA1
[2]  if ( j > 10 ) { 
[2a] if (x != null) // FIX
[3]     x.m1(); // NPR1
[4] x.m2(); 

} else { 
[5] x.m3(); 
[6] x.m4(); 

}
}

NPA1

NPR1

Incomplete Bug Fixes
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NPA1

NPR1X
X

Incomplete Bug Fixes

foo’(int i, j) {
[1]  x = null; // NPA1
[2]  if ( j > 10 ) { 
[2a] if (x != null) // FIX
[3]     x.m1(); // NPR1
[4] x.m2(); 

} else { 
[5] x.m3(); 
[6] x.m4(); 

}
}

X

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference
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NPA1

NPR1X
X

Incomplete Bug Fixes

foo’(int i, j) {
[1]  x = null; // NPA1
[2]  if ( j > 10 ) { 
[2a] if (x != null) // FIX
[3]     x.m1(); // NPR1
[4] x.m2();

} else { 
[5] x.m3(); 
[6] x.m4(); 

}
}

// NPR2
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NPA1

NPR1X
X

NPR2

Incomplete Bug Fixes

foo’(int i, j) {
[1]  x = null; // NPA1
[2]  if ( j > 10 ) { 
[2a] if (x != null) // FIX
[3]     x.m1(); // NPR1
[4] x.m2(); 

} else { 
[5] x.m3(); 
[6] x.m4(); 

}
}

// NPR2

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference
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NPR1X
X

NPR2

NPA1

Incomplete Bug Fixes

foo’(int i, j) {
[1]  x = null; // NPA1
[2]  if ( j > 10 ) { 
[2a] if (x != null) // FIX
[3]     x.m1(); // NPR1
[4] x.m2(); // NPR2

} else { 
[5] x.m3(); 
[6] x.m4(); 

}
}

// NPR3
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£ NPR: Null-Pointer deReference

13

NPR1X
X

NPR2

NPR3

NPA1

Incomplete Bug Fixes

foo’(int i, j) {
[1]  x = null; // NPA1
[2]  if ( j > 10 ) { 
[2a] if (x != null) // FIX
[3]     x.m1(); // NPR1
[4] x.m2(); // NPR2

} else { 
[5] x.m3(); 
[6] x.m4(); 

}
}

// NPR3

£ NPA : Null-Pointer Assignment
£ NPR: Null-Pointer deReference
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NPR1X
X

NPR2

NPR3

NPA1

Incomplete Bug Fixes

foo’(int i, j) {
[1]  x = null; // NPA1
[2]  if ( j > 10 ) { 
[2a] if (x != null) // FIX
[3]     x.m1(); // NPR1
[4] x.m2(); // NPR2

} else { 
[5] x.m3(); // NPR3
[6] x.m4(); 

}
}

Potential unfixed pairs 
related  to NPA1
à Incomplete fix



£ Bug neighborhood analysis
o Computes potential unfixed (NPA, NPR) pairs

£ Classification of attempted bug fixes as 
complete or incomplete

£ Empirical studies using open-source and 
commercial software
o Neighborhood can be large and complex
o Attempted bug fixes can be incomplete
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Our Work

£ Bug Neighborhoods (BN)
£ Technique
£ Empirical Evaluation
£ Conclusion
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Bug Neighborhood (BN)

£ Potential unfixed (NPA, NPR) 
pairs related to NPA1 and 
NPR1

£ BN is induced by 4 types of 
NPAs and NPRs identified by 
our approach
o Maybe NPR
o Forward NPR
o Maybe NPA
o Backward NPA
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NPR2

NPR1

X
X NPR3

NPA1

BN   Technique   Evaluation   Conclusion

Maybe NPRs

NPA1

NPR1
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Maybe NPRs

£ NPRs that might be 
reached by NPA1 in 
other executions

NPA1

NPR1
Maybe
NPR2

Maybe
NPR3
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X
X
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Forward NPRs

£ NPRs that might be 
reachable from 
NPA1 after NPR1 
and Maybe NPRs 
are fixed
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NPA1

NPR1
Maybe
NPR2

Maybe
NPR3

Forward
NPRs2
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Maybe NPAs

£ NPAs that might 
reach NPR1 in other
executions

NPA1

NPR1
Maybe
NPR2

Maybe
NPR3

Maybe
NPA2

Maybe
NPA3
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Forward
NPRs2

Forward
NPRs1

Forward
NPRs3

X
X
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Backward NPAs

£ NPAs that might 
reach NPR1 after 
NPA1 and Maybe 
NPAs are fixed
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NPA1

NPR1
Maybe
NPR2

Maybe
NPR3

Maybe
NPA2

Maybe
NPA3

Backward
NPAs2

Forward
NPRs2

Forward
NPRs1

Forward
NPRs3

Backward
NPAs1

Backward
NPAs3

XXX
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Bug Neighborhood (BN)

BN for (NPA1, NPR1) 

(NPA1, Maybe NPR2) 

(NPA1, Maybe NPR3)

(Maybe NPA2, NPR1) 

(Maybe NPA3, NPR1)

(NPA1, Forward NPR1) 

…

(NPA1, Forward NPRn) 

(Backward NPA1, NPR1)

…

(Backward NPAn, NPR1)

NPA1

NPR1
Maybe
NPR2

Maybe
NPR3

Maybe
NPA2

Maybe
NPA3

Backward
NPAs2

Forward
NPRs2

Forward
NPRs1

Forward
NPRs3

Backward
NPAs1

Backward
NPAs3
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£ BN for (NPA1, NPR1): set of potential unfixed  
pairs  related to (NPA1, NPR1)

£ Size of BN for (NPA1, NPR1): number of pairs 
in BN
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£ BN for (NPA1, NPR1): set of potential unfixed  
pairs  related to (NPA1, NPR1)

£ Size of BN for (NPA1, NPR1): number of pairs 
in BN

£ Complete fix: attempted fix (i.e. change from P
to P’ ) for (NPA1, NPR1) in which the BN for 
associated pair in P’ is empty
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Algorithm
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Bug 
Neighborhood 

Analysis

FixStatus
o unfixed
o fixed 

• incomplete
• complete

Bug
Neighborhood

for (sa’, sr’) in P’

(sa, sr) 
statements for 
(NPA1, NPR1) 

in P

Mapping 
Component 

(sa’, sr’) 
mapped 

statements in P’

BN   Technique   Evaluation   Conclusion

Example

foo( int i, j) {

[1]   x = null;

[2]   if ( j > 10 ) { 

[3] x.m1();

[4] x.m2();

} else { 

[5] x.m3();

[6] x.m4();

}

}
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// M-NPR

// F-NPR
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X

Input
(Sa, Sr): (1, 3)

(Sa’, Sr’): (1, 3)
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// F-NPR

// M-NPR

// F-NPR

// NPA1

// NPR1
// F-NPR

// M-NPR

// F-NPR

// NPA1

// NPR1

BugNeighborhoodAnalysis
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X
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£ Reaching NPAs for 3:
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X

(Sa’, Sr’): (1, 3)
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X

(Sa’, Sr’): (1, 3)

£ Reaching NPAs for 3:
None

£ Reachable NPRs for 1: 
4, 5, 6

£ (1,3) Ï BugNeighborhood
\ FixStatus = fixed but,  

incomplete

BugNeighborhood
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// F-NPR

// M-NPR

// F-NPR

// NPA1

// NPR1

£ Finding (NPA, NPR) pairs: XYLEM
[Nanda and Sinha ICSE2009]

£ Integrated our analysis into XYLEM
£ Mapping pairs between P and P’
£ Identifying BN for a (Sa’, Sr’) pair in P’

(No Backward NPAs implementation) 
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Subject Classes Methods
Bytecode

Instructions
(NPA, NPR)

Pairs

Ant-1.6.0 1858 17204 443254 167

Lucene-2.2.0 381 2815 72691 86

Tomcat-4.1.27 260 4077 101075 97

App-A 278 3933 98225 63

App-B 169 1876 46286 119

App-C 2488 13746 340896 107
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Method
For each (NPA, NPR) 
£ Compute BN and BN size
£ Classify 

o BN in 1 of 8 categories
o BN size in 1 of 3 categories

Goal: To examine characteristics of BNs

36

Study 1: BN Categories and Sizes
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BN Categories

Category
Maybe NPA

Present
Maybe NPR

Present
Forward NPR

Present

1 NO NO NO

2 NO NO YES

3 NO YES NO

4 NO YES YES

5 YES NO NO

6 YES NO YES

7 YES YES NO

8 YES YES YES
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Occurrences of Each BN Category
BN   Technique   Evaluation   Conclusion



£ Small: pairs £ 5
£ Medium: 5 < pairs £ 15
£ Large: pairs > 15
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BN Size Categories
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Method
For each (NPA, NPR) in P’
£ Verified mapping from P (manually) 
£ If mapping is accurate, compute BN for (NPA, 

NPR) pair (manually verified)

Goal: To investigate existence and frequency
of incomplete fixes
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Study 2: Completeness of Fixes
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Subject

# Incomplete Fixes /

# Attempted Fixes

BN Categories of 

Incomplete Fixes

BN Sizes of 

Incomplete Fixes

Ant 4 / 26 C2, C4, C4, C5 1 x Small,
3 x Medium

Lucene 3 / 17 C4, C4, C4 1 x Small, 
2 x Large

Tomcat 0 / 9 ¾ ¾

App-A 0 / 7 ¾ ¾
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C M-NPA M-MPR F-NPR
2 N N Y
4 N Y Y
5 Y N N

Completeness of Attempted Bug Fixes
BN   Technique   Evaluation   Conclusion



£ Implement Backward NPAs and precise 
mapping component

£ Perform more experiments with more subjects
o Correlation between incomplete fixes and BN 

category or size
o Comparison of results from open-source projects 

and industrial projects
£ Guide developers in addressing an incomplete 

fix and making it complete  
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Future Work
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£ New bug neighborhood analysis
o Determines completeness of attempted bug fixes

£ Technique that helps developers prevent 
incomplete fixes in new revisions

£ Empirical studies that show 
o large and complex BNs do occur frequently
o Attempted bug fixes are incomplete in practice
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Q & A


